aboutsummaryrefslogtreecommitdiff
blob: ff8671ac48da24778212c515d0d852eb8d185774 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
/*
 * IBM Accurate Mathematical Library
 * Written by International Business Machines Corp.
 * Copyright (C) 2001-2018 Free Software Foundation, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation; either version 2.1 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

/************************************************************************/
/*  MODULE_NAME: atnat.h                                                */
/*                                                                      */
/*                                                                      */
/* 	common data and variables definition for BIG or LITTLE ENDIAN   */
/************************************************************************/
#ifndef ATNAT_H
#define ATNAT_H

#define M 4

#ifdef BIG_ENDI
  static const number
  /* polynomial I */
/**/ d3             = {{0xbfd55555, 0x55555555} }, /* -0.333... */
/**/ d5             = {{0x3fc99999, 0x999997fd} }, /*  0.199... */
/**/ d7             = {{0xbfc24924, 0x923f7603} }, /* -0.142... */
/**/ d9             = {{0x3fbc71c6, 0xe5129a3b} }, /*  0.111... */
/**/ d11            = {{0xbfb74580, 0x22b13c25} }, /* -0.090... */
/**/ d13            = {{0x3fb375f0, 0x8b31cbce} }, /*  0.076... */
  /* polynomial II */
/**/ f3             = {{0xbfd55555, 0x55555555} }, /* -1/3      */
/**/ ff3            = {{0xbc755555, 0x55555555} }, /* -1/3-f3   */
/**/ f5             = {{0x3fc99999, 0x9999999a} }, /*  1/5      */
/**/ ff5            = {{0xbc699999, 0x9999999a} }, /*  1/5-f5   */
/**/ f7             = {{0xbfc24924, 0x92492492} }, /* -1/7      */
/**/ ff7            = {{0xbc624924, 0x92492492} }, /* -1/7-f7   */
/**/ f9             = {{0x3fbc71c7, 0x1c71c71c} }, /*  1/9      */
/**/ ff9            = {{0x3c5c71c7, 0x1c71c71c} }, /*  1/9-f9   */
/**/ f11            = {{0xbfb745d1, 0x745d1746} }, /* -1/11     */
/**/ f13            = {{0x3fb3b13b, 0x13b13b14} }, /*  1/13     */
/**/ f15            = {{0xbfb11111, 0x11111111} }, /* -1/15     */
/**/ f17            = {{0x3fae1e1e, 0x1e1e1e1e} }, /*  1/17     */
/**/ f19            = {{0xbfaaf286, 0xbca1af28} }, /* -1/19     */
  /* constants    */
/**/ a              = {{0x3e4bb67a, 0x00000000} }, /*  1.290e-8     */
/**/ b              = {{0x3fb00000, 0x00000000} }, /*  1/16         */
/**/ c              = {{0x3ff00000, 0x00000000} }, /*  1            */
/**/ d              = {{0x40300000, 0x00000000} }, /*  16           */
/**/ e              = {{0x43349ff2, 0x00000000} }, /*  5.805e15     */
/**/ hpi            = {{0x3ff921fb, 0x54442d18} }, /*  pi/2         */
/**/ mhpi           = {{0xbff921fb, 0x54442d18} }, /* -pi/2         */
/**/ hpi1           = {{0x3c91a626, 0x33145c07} }, /*  pi/2-hpi     */
/**/ u1             = {{0x3c2d3382, 0x00000000} }, /*  7.915e-19    */
/**/ u21            = {{0x3c6dffc0, 0x00000000} }, /*  1.301e-17    */
/**/ u22            = {{0x3c527bd0, 0x00000000} }, /*  4.008e-18    */
/**/ u23            = {{0x3c3cd057, 0x00000000} }, /*  1.562e-18    */
/**/ u24            = {{0x3c329cdf, 0x00000000} }, /*  1.009e-18    */
/**/ u31            = {{0x3c3a1edf, 0x00000000} }, /*  1.416e-18    */
/**/ u32            = {{0x3c33f0e1, 0x00000000} }, /*  1.081e-18    */
/**/ u4             = {{0x3bf955e4, 0x00000000} }, /*  8.584e-20    */
/**/ u5             = {{0x3aaef2d1, 0x00000000} }, /*  5e-26        */
/**/ u6             = {{0x3a98c56d, 0x00000000} }, /*  2.001e-26    */
/**/ u7             = {{0x3a9375de, 0x00000000} }, /*  1.572e-26    */
/**/ u8             = {{0x3a6eeb36, 0x00000000} }, /*  3.122e-27    */
/**/ u9[M]          ={{{0x38c1aa5b, 0x00000000} }, /* 2.658e-35     */
/**/                  {{0x35c1aa4d, 0x00000000} }, /* 9.443e-50     */
/**/                  {{0x32c1aa88, 0x00000000} }, /* 3.355e-64     */
/**/                  {{0x11c1aa56, 0x00000000} }};/* 3.818e-223    */

#else
#ifdef LITTLE_ENDI
  static const number
  /* polynomial I */
/**/ d3             = {{0x55555555, 0xbfd55555} }, /* -0.333... */
/**/ d5             = {{0x999997fd, 0x3fc99999} }, /*  0.199... */
/**/ d7             = {{0x923f7603, 0xbfc24924} }, /* -0.142... */
/**/ d9             = {{0xe5129a3b, 0x3fbc71c6} }, /*  0.111... */
/**/ d11            = {{0x22b13c25, 0xbfb74580} }, /* -0.090... */
/**/ d13            = {{0x8b31cbce, 0x3fb375f0} }, /*  0.076... */
  /* polynomial II */
/**/ f3             = {{0x55555555, 0xbfd55555} }, /* -1/3      */
/**/ ff3            = {{0x55555555, 0xbc755555} }, /* -1/3-f3   */
/**/ f5             = {{0x9999999a, 0x3fc99999} }, /*  1/5      */
/**/ ff5            = {{0x9999999a, 0xbc699999} }, /*  1/5-f5   */
/**/ f7             = {{0x92492492, 0xbfc24924} }, /* -1/7      */
/**/ ff7            = {{0x92492492, 0xbc624924} }, /* -1/7-f7   */
/**/ f9             = {{0x1c71c71c, 0x3fbc71c7} }, /*  1/9      */
/**/ ff9            = {{0x1c71c71c, 0x3c5c71c7} }, /*  1/9-f9   */
/**/ f11            = {{0x745d1746, 0xbfb745d1} }, /* -1/11     */
/**/ f13            = {{0x13b13b14, 0x3fb3b13b} }, /*  1/13     */
/**/ f15            = {{0x11111111, 0xbfb11111} }, /* -1/15     */
/**/ f17            = {{0x1e1e1e1e, 0x3fae1e1e} }, /*  1/17     */
/**/ f19            = {{0xbca1af28, 0xbfaaf286} }, /* -1/19     */
  /* constants    */
/**/ a              = {{0x00000000, 0x3e4bb67a} }, /*  1.290e-8     */
/**/ b              = {{0x00000000, 0x3fb00000} }, /*  1/16         */
/**/ c              = {{0x00000000, 0x3ff00000} }, /*  1            */
/**/ d              = {{0x00000000, 0x40300000} }, /*  16           */
/**/ e              = {{0x00000000, 0x43349ff2} }, /*  5.805e15     */
/**/ hpi            = {{0x54442d18, 0x3ff921fb} }, /*  pi/2         */
/**/ mhpi           = {{0x54442d18, 0xbff921fb} }, /* -pi/2         */
/**/ hpi1           = {{0x33145c07, 0x3c91a626} }, /*  pi/2-hpi     */
/**/ u1             = {{0x00000000, 0x3c2d3382} }, /*  7.915e-19    */
/**/ u21            = {{0x00000000, 0x3c6dffc0} }, /*  1.301e-17    */
/**/ u22            = {{0x00000000, 0x3c527bd0} }, /*  4.008e-18    */
/**/ u23            = {{0x00000000, 0x3c3cd057} }, /*  1.562e-18    */
/**/ u24            = {{0x00000000, 0x3c329cdf} }, /*  1.009e-18    */
/**/ u31            = {{0x00000000, 0x3c3a1edf} }, /*  1.416e-18    */
/**/ u32            = {{0x00000000, 0x3c33f0e1} }, /*  1.081e-18    */
/**/ u4             = {{0x00000000, 0x3bf955e4} }, /*  8.584e-20    */
/**/ u5             = {{0x00000000, 0x3aaef2d1} }, /*  5e-26        */
/**/ u6             = {{0x00000000, 0x3a98c56d} }, /*  2.001e-26    */
/**/ u7             = {{0x00000000, 0x3a9375de} }, /*  1.572e-26    */
/**/ u8             = {{0x00000000, 0x3a6eeb36} }, /*  3.122e-27    */
/**/ u9[M]          ={{{0x00000000, 0x38c1aa5b} }, /* 2.658e-35     */
/**/                  {{0x00000000, 0x35c1aa4d} }, /* 9.443e-50     */
/**/                  {{0x00000000, 0x32c1aa88} }, /* 3.355e-64     */
/**/                  {{0x00000000, 0x11c1aa56} }};/* 3.818e-223    */

#endif
#endif

#define  A         a.d
#define  B         b.d
#define  C         c.d
#define  D         d.d
#define  E         e.d
#define  HPI       hpi.d
#define  MHPI      mhpi.d
#define  HPI1      hpi1.d
#define  U1        u1.d
#define  U21       u21.d
#define  U22       u22.d
#define  U23       u23.d
#define  U24       u24.d
#define  U31       u31.d
#define  U32       u32.d
#define  U4        u4.d
#define  U5        u5.d
#define  U6        u6.d
#define  U7        u7.d
#define  U8        u8.d

#endif