aboutsummaryrefslogtreecommitdiff
blob: f058cf846cf32147654ecb636a5cbb59ef0092dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
The following functions for the `long double' versions of the libm
function have to be written:

e_acosl.c
e_asinl.c
e_atan2l.c
e_expl.c
e_fmodl.c
e_hypotl.c
e_j0l.c
e_j1l.c
e_jnl.c
e_lgammal_r.c
e_logl.c
e_log10l.c
e_powl.c
e_rem_pio2l.c
e_sinhl.c
e_sqrtl.c

k_cosl.c
k_rem_pio2l.c
k_sinl.c
k_tanl.c

s_atanl.c
s_erfl.c
s_expm1l.c
s_log1pl.c

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
			       Methods
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
arcsin
~~~~~~
 *	Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
 *	we approximate asin(x) on [0,0.5] by
 *		asin(x) = x + x*x^2*R(x^2)
 *	where
 *		R(x^2) is a rational approximation of (asin(x)-x)/x^3
 *	and its remez error is bounded by
 *		|(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
 *
 *	For x in [0.5,1]
 *		asin(x) = pi/2-2*asin(sqrt((1-x)/2))
 *	Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
 *	then for x>0.98
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 *			= pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
 *	For x<=0.98, let pio4_hi = pio2_hi/2, then
 *		f = hi part of s;
 *		c = sqrt(z) - f = (z-f*f)/(s+f) 	...f+c=sqrt(z)
 *	and
 *		asin(x) = pi/2 - 2*(s+s*z*R(z))
 *			= pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
 *			= pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
arccos
~~~~~~
 * Method :
 *	acos(x)  = pi/2 - asin(x)
 *	acos(-x) = pi/2 + asin(x)
 * For |x|<=0.5
 *	acos(x) = pi/2 - (x + x*x^2*R(x^2))	(see asin.c)
 * For x>0.5
 * 	acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
 *		= 2asin(sqrt((1-x)/2))
 *		= 2s + 2s*z*R(z) 	...z=(1-x)/2, s=sqrt(z)
 *		= 2f + (2c + 2s*z*R(z))
 *     where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
 *     for f so that f+c ~ sqrt(z).
 * For x<-0.5
 *	acos(x) = pi - 2asin(sqrt((1-|x|)/2))
 *		= pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
atan2
~~~~~
 * Method :
 *	1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
 *	2. Reduce x to positive by (if x and y are unexceptional):
 *		ARG (x+iy) = arctan(y/x)   	   ... if x > 0,
 *		ARG (x+iy) = pi - arctan[y/(-x)]   ... if x < 0,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
atan
~~~~
 * Method
 *   1. Reduce x to positive by atan(x) = -atan(-x).
 *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
 *      is further reduced to one of the following intervals and the
 *      arctangent of t is evaluated by the corresponding formula:
 *
 *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
 *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
 *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
 *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
 *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
exp
~~~
 * Method
 *   1. Argument reduction:
 *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
 *	Given x, find r and integer k such that
 *
 *               x = k*ln2 + r,  |r| <= 0.5*ln2.
 *
 *      Here r will be represented as r = hi-lo for better
 *	accuracy.
 *
 *   2. Approximation of exp(r) by a special rational function on
 *	the interval [0,0.34658]:
 *	Write
 *	    R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
 *      We use a special Reme algorithm on [0,0.34658] to generate
 * 	a polynomial of degree 5 to approximate R. The maximum error
 *	of this polynomial approximation is bounded by 2**-59. In
 *	other words,
 *	    R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
 *  	(where z=r*r, and the values of P1 to P5 are listed below)
 *	and
 *	    |                  5          |     -59
 *	    | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
 *	    |                             |
 *	The computation of exp(r) thus becomes
 *                             2*r
 *		exp(r) = 1 + -------
 *		              R - r
 *                                 r*R1(r)
 *		       = 1 + r + ----------- (for better accuracy)
 *		                  2 - R1(r)
 *	where
 *			         2       4             10
 *		R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
 *
 *   3. Scale back to obtain exp(x):
 *	From step 1, we have
 *	   exp(x) = 2^k * exp(r)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
hypot
~~~~~
 *	If (assume round-to-nearest) z=x*x+y*y
 *	has error less than sqrt(2)/2 ulp, than
 *	sqrt(z) has error less than 1 ulp (exercise).
 *
 *	So, compute sqrt(x*x+y*y) with some care as
 *	follows to get the error below 1 ulp:
 *
 *	Assume x>y>0;
 *	(if possible, set rounding to round-to-nearest)
 *	1. if x > 2y  use
 *		x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
 *	where x1 = x with lower 32 bits cleared, x2 = x-x1; else
 *	2. if x <= 2y use
 *		t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
 *	where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
 *	y1= y with lower 32 bits chopped, y2 = y-y1.
 *
 *	NOTE: scaling may be necessary if some argument is too
 *	      large or too tiny
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
j0/y0
~~~~~
 * Method -- j0(x):
 *	1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
 *	2. Reduce x to |x| since j0(x)=j0(-x),  and
 *	   for x in (0,2)
 *		j0(x) = 1-z/4+ z^2*R0/S0,  where z = x*x;
 *	   (precision:  |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
 *	   for x in (2,inf)
 * 		j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
 * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
 *	   as follow:
 *		cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
 *			= 1/sqrt(2) * (cos(x) + sin(x))
 *		sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
 *			= 1/sqrt(2) * (sin(x) - cos(x))
 * 	   (To avoid cancellation, use
 *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
 * 	    to compute the worse one.)
 *
 * Method -- y0(x):
 *	1. For x<2.
 *	   Since
 *		y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
 *	   therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
 *	   We use the following function to approximate y0,
 *		y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
 *	   where
 *		U(z) = u00 + u01*z + ... + u06*z^6
 *		V(z) = 1  + v01*z + ... + v04*z^4
 *	   with absolute approximation error bounded by 2**-72.
 *	   Note: For tiny x, U/V = u0 and j0(x)~1, hence
 *		y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
 *	2. For x>=2.
 * 		y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
 * 	   where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
 *	   by the method mentioned above.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
j1/y1
~~~~~
 * Method -- j1(x):
 *	1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
 *	2. Reduce x to |x| since j1(x)=-j1(-x),  and
 *	   for x in (0,2)
 *		j1(x) = x/2 + x*z*R0/S0,  where z = x*x;
 *	   (precision:  |j1/x - 1/2 - R0/S0 |<2**-61.51 )
 *	   for x in (2,inf)
 * 		j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
 * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
 * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
 *	   as follow:
 *		cos(x1) =  cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
 *			=  1/sqrt(2) * (sin(x) - cos(x))
 *		sin(x1) =  sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
 *			= -1/sqrt(2) * (sin(x) + cos(x))
 * 	   (To avoid cancellation, use
 *		sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
 * 	    to compute the worse one.)
 *
 * Method -- y1(x):
 *	1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
 *	2. For x<2.
 *	   Since
 *		y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
 *	   therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
 *	   We use the following function to approximate y1,
 *		y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
 *	   where for x in [0,2] (abs err less than 2**-65.89)
 *		U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
 *		V(z) = 1  + v0[0]*z + ... + v0[4]*z^5
 *	   Note: For tiny x, 1/x dominate y1 and hence
 *		y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
 *	3. For x>=2.
 * 		y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
 * 	   where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
 *	   by method mentioned above.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
jn/yn
~~~~~
 * Note 2. About jn(n,x), yn(n,x)
 *	For n=0, j0(x) is called,
 *	for n=1, j1(x) is called,
 *	for n<x, forward recursion us used starting
 *	from values of j0(x) and j1(x).
 *	for n>x, a continued fraction approximation to
 *	j(n,x)/j(n-1,x) is evaluated and then backward
 *	recursion is used starting from a supposed value
 *	for j(n,x). The resulting value of j(0,x) is
 *	compared with the actual value to correct the
 *	supposed value of j(n,x).
 *
 *	yn(n,x) is similar in all respects, except
 *	that forward recursion is used for all
 *	values of n>1.

jn:
    /* (x >> n**2)
     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
     *	    Let s=sin(x), c=cos(x),
     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
     *
     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
     *		----------------------------------
     *		   0	 s-c		 c+s
     *		   1	-s-c 		-c+s
     *		   2	-s+c		-c-s
     *		   3	 s+c		 c-s
...
    /* x is tiny, return the first Taylor expansion of J(n,x)
     * J(n,x) = 1/n!*(x/2)^n  - ...
...
		/* use backward recurrence */
		/* 			x      x^2      x^2
		 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
		 *			2n  - 2(n+1) - 2(n+2)
		 *
		 * 			1      1        1
		 *  (for large x)   =  ----  ------   ------   .....
		 *			2n   2(n+1)   2(n+2)
		 *			-- - ------ - ------ -
		 *			 x     x         x
		 *
		 * Let w = 2n/x and h=2/x, then the above quotient
		 * is equal to the continued fraction:
		 *		    1
		 *	= -----------------------
		 *		       1
		 *	   w - -----------------
		 *			  1
		 * 	        w+h - ---------
		 *		       w+2h - ...
		 *
		 * To determine how many terms needed, let
		 * Q(0) = w, Q(1) = w(w+h) - 1,
		 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
		 * When Q(k) > 1e4	good for single
		 * When Q(k) > 1e9	good for double
		 * When Q(k) > 1e17	good for quadruple

...
		/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
		 *  Hence, if n*(log(2n/x)) > ...
		 *  single 8.8722839355e+01
		 *  double 7.09782712893383973096e+02
		 *  long double 1.1356523406294143949491931077970765006170e+04
		 *  then recurrent value may overflow and the result is
		 *  likely underflow to zero

yn:
    /* (x >> n**2)
     *	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
     *	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
     *	    Let s=sin(x), c=cos(x),
     *		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
     *
     *		   n	sin(xn)*sqt2	cos(xn)*sqt2
     *		----------------------------------
     *		   0	 s-c		 c+s
     *		   1	-s-c 		-c+s
     *		   2	-s+c		-c-s
     *		   3	 s+c		 c-s
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
lgamma
~~~~~~
 * Method:
 *   1. Argument Reduction for 0 < x <= 8
 * 	Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
 * 	reduce x to a number in [1.5,2.5] by
 * 		lgamma(1+s) = log(s) + lgamma(s)
 *	for example,
 *		lgamma(7.3) = log(6.3) + lgamma(6.3)
 *			    = log(6.3*5.3) + lgamma(5.3)
 *			    = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
 *   2. Polynomial approximation of lgamma around its
 *	minimun ymin=1.461632144968362245 to maintain monotonicity.
 *	On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
 *		Let z = x-ymin;
 *		lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
 *	where
 *		poly(z) is a 14 degree polynomial.
 *   2. Rational approximation in the primary interval [2,3]
 *	We use the following approximation:
 *		s = x-2.0;
 *		lgamma(x) = 0.5*s + s*P(s)/Q(s)
 *	with accuracy
 *		|P/Q - (lgamma(x)-0.5s)| < 2**-61.71
 *	Our algorithms are based on the following observation
 *
 *                             zeta(2)-1    2    zeta(3)-1    3
 * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ...
 *                                 2                 3
 *
 *	where Euler = 0.5771... is the Euler constant, which is very
 *	close to 0.5.
 *
 *   3. For x>=8, we have
 *	lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
 *	(better formula:
 *	   lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
 *	Let z = 1/x, then we approximation
 *		f(z) = lgamma(x) - (x-0.5)(log(x)-1)
 *	by
 *	  			    3       5             11
 *		w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z
 *	where
 *		|w - f(z)| < 2**-58.74
 *
 *   4. For negative x, since (G is gamma function)
 *		-x*G(-x)*G(x) = pi/sin(pi*x),
 * 	we have
 * 		G(x) = pi/(sin(pi*x)*(-x)*G(-x))
 *	since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
 *	Hence, for x<0, signgam = sign(sin(pi*x)) and
 *		lgamma(x) = log(|Gamma(x)|)
 *			  = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
 *	Note: one should avoid compute pi*(-x) directly in the
 *	      computation of sin(pi*(-x)).
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
log
~~~
 * Method :
 *   1. Argument Reduction: find k and f such that
 *			x = 2^k * (1+f),
 *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
 *
 *   2. Approximation of log(1+f).
 *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 *	     	 = 2s + s*R
 *      We use a special Reme algorithm on [0,0.1716] to generate
 * 	a polynomial of degree 14 to approximate R The maximum error
 *	of this polynomial approximation is bounded by 2**-58.45. In
 *	other words,
 *		        2      4      6      8      10      12      14
 *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
 *  	(the values of Lg1 to Lg7 are listed in the program)
 *	and
 *	    |      2          14          |     -58.45
 *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
 *	    |                             |
 *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 *	In order to guarantee error in log below 1ulp, we compute log
 *	by
 *		log(1+f) = f - s*(f - R)	(if f is not too large)
 *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
 *
 *	3. Finally,  log(x) = k*ln2 + log(1+f).
 *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
 *	   Here ln2 is split into two floating point number:
 *			ln2_hi + ln2_lo,
 *	   where n*ln2_hi is always exact for |n| < 2000.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
log10
~~~~~
 * Method :
 *	Let log10_2hi = leading 40 bits of log10(2) and
 *	    log10_2lo = log10(2) - log10_2hi,
 *	    ivln10   = 1/log(10) rounded.
 *	Then
 *		n = ilogb(x),
 *		if(n<0)  n = n+1;
 *		x = scalbn(x,-n);
 *		log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
 *
 * Note 1:
 *	To guarantee log10(10**n)=n, where 10**n is normal, the rounding
 *	mode must set to Round-to-Nearest.
 * Note 2:
 *	[1/log(10)] rounded to 53 bits has error  .198   ulps;
 *	log10 is monotonic at all binary break points.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pow
~~~
 * Method:  Let x =  2   * (1+f)
 *	1. Compute and return log2(x) in two pieces:
 *		log2(x) = w1 + w2,
 *	   where w1 has 53-24 = 29 bit trailing zeros.
 *	2. Perform y*log2(x) = n+y' by simulating muti-precision
 *	   arithmetic, where |y'|<=0.5.
 *	3. Return x**y = 2**n*exp(y'*log2)
 *
 * Special cases:
 *	1.  (anything) ** 0  is 1
 *	2.  (anything) ** 1  is itself
 *	3.  (anything) ** NAN is NAN
 *	4.  NAN ** (anything except 0) is NAN
 *	5.  +-(|x| > 1) **  +INF is +INF
 *	6.  +-(|x| > 1) **  -INF is +0
 *	7.  +-(|x| < 1) **  +INF is +0
 *	8.  +-(|x| < 1) **  -INF is +INF
 *	9.  +-1         ** +-INF is NAN
 *	10. +0 ** (+anything except 0, NAN)               is +0
 *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 *	12. +0 ** (-anything except 0, NAN)               is +INF
 *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 *	15. +INF ** (+anything except 0,NAN) is +INF
 *	16. +INF ** (-anything except 0,NAN) is +0
 *	17. -INF ** (anything)  = -0 ** (-anything)
 *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 *	19. (-anything except 0 and inf) ** (non-integer) is NAN
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
rem_pio2	return the remainder of x rem pi/2 in y[0]+y[1]
~~~~~~~~
This is one of the basic functions which is written with highest accuracy
in mind.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sinh
~~~~
 * Method :
 * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
 *	1. Replace x by |x| (sinh(-x) = -sinh(x)).
 *	2.
 *		                                    E + E/(E+1)
 *	    0        <= x <= 22     :  sinh(x) := --------------, E=expm1(x)
 *			       			        2
 *
 *	    22       <= x <= lnovft :  sinh(x) := exp(x)/2
 *	    lnovft   <= x <= ln2ovft:  sinh(x) := exp(x/2)/2 * exp(x/2)
 *	    ln2ovft  <  x	    :  sinh(x) := x*shuge (overflow)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sqrt
~~~~
 * Method:
 *   Bit by bit method using integer arithmetic. (Slow, but portable)
 *   1. Normalization
 *	Scale x to y in [1,4) with even powers of 2:
 *	find an integer k such that  1 <= (y=x*2^(-2k)) < 4, then
 *		sqrt(x) = 2^k * sqrt(y)
 *   2. Bit by bit computation
 *	Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
 *	     i							 0
 *                                     i+1         2
 *	    s  = 2*q , and	y  =  2   * ( y - q  ).		(1)
 *	     i      i            i                 i
 *
 *	To compute q    from q , one checks whether
 *		    i+1       i
 *
 *			      -(i+1) 2
 *			(q + 2      ) <= y.			(2)
 *     			  i
 *							      -(i+1)
 *	If (2) is false, then q   = q ; otherwise q   = q  + 2      .
 *		 	       i+1   i             i+1   i
 *
 *	With some algebric manipulation, it is not difficult to see
 *	that (2) is equivalent to
 *                             -(i+1)
 *			s  +  2       <= y			(3)
 *			 i                i
 *
 *	The advantage of (3) is that s  and y  can be computed by
 *				      i      i
 *	the following recurrence formula:
 *	    if (3) is false
 *
 *	    s     =  s  ,	y    = y   ;			(4)
 *	     i+1      i		 i+1    i
 *
 *	    otherwise,
 *                         -i                     -(i+1)
 *	    s	  =  s  + 2  ,  y    = y  -  s  - 2  		(5)
 *           i+1      i          i+1    i     i
 *
 *	One may easily use induction to prove (4) and (5).
 *	Note. Since the left hand side of (3) contain only i+2 bits,
 *	      it does not necessary to do a full (53-bit) comparison
 *	      in (3).
 *   3. Final rounding
 *	After generating the 53 bits result, we compute one more bit.
 *	Together with the remainder, we can decide whether the
 *	result is exact, bigger than 1/2ulp, or less than 1/2ulp
 *	(it will never equal to 1/2ulp).
 *	The rounding mode can be detected by checking whether
 *	huge + tiny is equal to huge, and whether huge - tiny is
 *	equal to huge for some floating point number "huge" and "tiny".
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
cos
~~~
 * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 *
 * Algorithm
 *	1. Since cos(-x) = cos(x), we need only to consider positive x.
 *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
 *	3. cos(x) is approximated by a polynomial of degree 14 on
 *	   [0,pi/4]
 *		  	                 4            14
 *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
 *	   where the remez error is
 *
 * 	|              2     4     6     8     10    12     14 |     -58
 * 	|cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
 * 	|    					               |
 *
 * 	               4     6     8     10    12     14
 *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
 *	       cos(x) = 1 - x*x/2 + r
 *	   since cos(x+y) ~ cos(x) - sin(x)*y
 *			  ~ cos(x) - x*y,
 *	   a correction term is necessary in cos(x) and hence
 *		cos(x+y) = 1 - (x*x/2 - (r - x*y))
 *	   For better accuracy when x > 0.3, let qx = |x|/4 with
 *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
 *	   Then
 *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
 *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the
 *	   magnitude of the latter is at least a quarter of x*x/2,
 *	   thus, reducing the rounding error in the subtraction.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sin
~~~
 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
 *
 * Algorithm
 *	1. Since sin(-x) = -sin(x), we need only to consider positive x.
 *	2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
 *	3. sin(x) is approximated by a polynomial of degree 13 on
 *	   [0,pi/4]
 *		  	         3            13
 *	   	sin(x) ~ x + S1*x + ... + S6*x
 *	   where
 *
 * 	|sin(x)         2     4     6     8     10     12  |     -58
 * 	|----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
 * 	|  x 					           |
 *
 *	4. sin(x+y) = sin(x) + sin'(x')*y
 *		    ~ sin(x) + (1-x*x/2)*y
 *	   For better accuracy, let
 *		     3      2      2      2      2
 *		r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
 *	   then                   3    2
 *		sin(x) = x + (S1*x + (x *(r-y/2)+y))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
tan
~~~
 * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input k indicates whether tan (if k=1) or
 * -1/tan (if k= -1) is returned.
 *
 * Algorithm
 *	1. Since tan(-x) = -tan(x), we need only to consider positive x.
 *	2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
 *	3. tan(x) is approximated by a odd polynomial of degree 27 on
 *	   [0,0.67434]
 *		  	         3             27
 *	   	tan(x) ~ x + T1*x + ... + T13*x
 *	   where
 *
 * 	        |tan(x)         2     4            26   |     -59.2
 * 	        |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
 * 	        |  x 					|
 *
 *	   Note: tan(x+y) = tan(x) + tan'(x)*y
 *		          ~ tan(x) + (1+x*x)*y
 *	   Therefore, for better accuracy in computing tan(x+y), let
 *		     3      2      2       2       2
 *		r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
 *	   then
 *		 		    3    2
 *		tan(x+y) = x + (T1*x + (x *(r+y)+y))
 *
 *      4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
 *		tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
 *		       = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
atan
~~~~
 * Method
 *   1. Reduce x to positive by atan(x) = -atan(-x).
 *   2. According to the integer k=4t+0.25 chopped, t=x, the argument
 *      is further reduced to one of the following intervals and the
 *      arctangent of t is evaluated by the corresponding formula:
 *
 *      [0,7/16]      atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
 *      [7/16,11/16]  atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
 *      [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
 *      [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
 *      [39/16,INF]   atan(x) = atan(INF) + atan( -1/t )
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
erf
~~~
 *			     x
 *		      2      |\
 *     erf(x)  =  ---------  | exp(-t*t)dt
 *	 	   sqrt(pi) \|
 *			     0
 *
 *     erfc(x) =  1-erf(x)
 *  Note that
 *		erf(-x) = -erf(x)
 *		erfc(-x) = 2 - erfc(x)
 *
 * Method:
 *	1. For |x| in [0, 0.84375]
 *	    erf(x)  = x + x*R(x^2)
 *          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
 *                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
 *	   where R = P/Q where P is an odd poly of degree 8 and
 *	   Q is an odd poly of degree 10.
 *						 -57.90
 *			| R - (erf(x)-x)/x | <= 2
 *
 *
 *	   Remark. The formula is derived by noting
 *          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
 *	   and that
 *          2/sqrt(pi) = 1.128379167095512573896158903121545171688
 *	   is close to one. The interval is chosen because the fix
 *	   point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
 *	   near 0.6174), and by some experiment, 0.84375 is chosen to
 * 	   guarantee the error is less than one ulp for erf.
 *
 *      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
 *         c = 0.84506291151 rounded to single (24 bits)
 *         	erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
 *         	erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
 *			  1+(c+P1(s)/Q1(s))    if x < 0
 *         	|P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
 *	   Remark: here we use the taylor series expansion at x=1.
 *		erf(1+s) = erf(1) + s*Poly(s)
 *			 = 0.845.. + P1(s)/Q1(s)
 *	   That is, we use rational approximation to approximate
 *			erf(1+s) - (c = (single)0.84506291151)
 *	   Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
 *	   where
 *		P1(s) = degree 6 poly in s
 *		Q1(s) = degree 6 poly in s
 *
 *      3. For x in [1.25,1/0.35(~2.857143)],
 *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
 *         	erf(x)  = 1 - erfc(x)
 *	   where
 *		R1(z) = degree 7 poly in z, (z=1/x^2)
 *		S1(z) = degree 8 poly in z
 *
 *      4. For x in [1/0.35,28]
 *         	erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
 *			= 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
 *			= 2.0 - tiny		(if x <= -6)
 *         	erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
 *         	erf(x)  = sign(x)*(1.0 - tiny)
 *	   where
 *		R2(z) = degree 6 poly in z, (z=1/x^2)
 *		S2(z) = degree 7 poly in z
 *
 *      Note1:
 *	   To compute exp(-x*x-0.5625+R/S), let s be a single
 *	   precision number and s := x; then
 *		-x*x = -s*s + (s-x)*(s+x)
 *	        exp(-x*x-0.5626+R/S) =
 *			exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
 *      Note2:
 *	   Here 4 and 5 make use of the asymptotic series
 *			  exp(-x*x)
 *		erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
 *			  x*sqrt(pi)
 *	   We use rational approximation to approximate
 *      	g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
 *	   Here is the error bound for R1/S1 and R2/S2
 *      	|R1/S1 - f(x)|  < 2**(-62.57)
 *      	|R2/S2 - f(x)|  < 2**(-61.52)
 *
 *      5. For inf > x >= 28
 *         	erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
 *         	erfc(x) = tiny*tiny (raise underflow) if x > 0
 *			= 2 - tiny if x<0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
expm1	Returns exp(x)-1, the exponential of x minus 1
~~~~~
 * Method
 *   1. Argument reduction:
 *	Given x, find r and integer k such that
 *
 *               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
 *
 *      Here a correction term c will be computed to compensate
 *	the error in r when rounded to a floating-point number.
 *
 *   2. Approximating expm1(r) by a special rational function on
 *	the interval [0,0.34658]:
 *	Since
 *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
 *	we define R1(r*r) by
 *	    r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
 *	That is,
 *	    R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
 *		     = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
 *		     = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
 *      We use a special Reme algorithm on [0,0.347] to generate
 * 	a polynomial of degree 5 in r*r to approximate R1. The
 *	maximum error of this polynomial approximation is bounded
 *	by 2**-61. In other words,
 *	    R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
 *	where 	Q1  =  -1.6666666666666567384E-2,
 * 		Q2  =   3.9682539681370365873E-4,
 * 		Q3  =  -9.9206344733435987357E-6,
 * 		Q4  =   2.5051361420808517002E-7,
 * 		Q5  =  -6.2843505682382617102E-9;
 *  	(where z=r*r, and the values of Q1 to Q5 are listed below)
 *	with error bounded by
 *	    |                  5           |     -61
 *	    | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
 *	    |                              |
 *
 *	expm1(r) = exp(r)-1 is then computed by the following
 * 	specific way which minimize the accumulation rounding error:
 *			       2     3
 *			      r     r    [ 3 - (R1 + R1*r/2)  ]
 *	      expm1(r) = r + --- + --- * [--------------------]
 *		              2     2    [ 6 - r*(3 - R1*r/2) ]
 *
 *	To compensate the error in the argument reduction, we use
 *		expm1(r+c) = expm1(r) + c + expm1(r)*c
 *			   ~ expm1(r) + c + r*c
 *	Thus c+r*c will be added in as the correction terms for
 *	expm1(r+c). Now rearrange the term to avoid optimization
 * 	screw up:
 *		        (      2                                    2 )
 *		        ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
 *	 expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
 *	                ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
 *                      (                                             )
 *
 *		   = r - E
 *   3. Scale back to obtain expm1(x):
 *	From step 1, we have
 *	   expm1(x) = either 2^k*[expm1(r)+1] - 1
 *		    = or     2^k*[expm1(r) + (1-2^-k)]
 *   4. Implementation notes:
 *	(A). To save one multiplication, we scale the coefficient Qi
 *	     to Qi*2^i, and replace z by (x^2)/2.
 *	(B). To achieve maximum accuracy, we compute expm1(x) by
 *	  (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
 *	  (ii)  if k=0, return r-E
 *	  (iii) if k=-1, return 0.5*(r-E)-0.5
 *        (iv)	if k=1 if r < -0.25, return 2*((r+0.5)- E)
 *	       	       else	     return  1.0+2.0*(r-E);
 *	  (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
 *	  (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
 *	  (vii) return 2^k(1-((E+2^-k)-r))
 *
 * Special cases:
 *	expm1(INF) is INF, expm1(NaN) is NaN;
 *	expm1(-INF) is -1, and
 *	for finite argument, only expm1(0)=0 is exact.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
log1p
~~~~~
 * Method :
 *   1. Argument Reduction: find k and f such that
 *			1+x = 2^k * (1+f),
 *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
 *
 *      Note. If k=0, then f=x is exact. However, if k!=0, then f
 *	may not be representable exactly. In that case, a correction
 *	term is need. Let u=1+x rounded. Let c = (1+x)-u, then
 *	log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
 *	and add back the correction term c/u.
 *	(Note: when x > 2**53, one can simply return log(x))
 *
 *   2. Approximation of log1p(f).
 *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 *	     	 = 2s + s*R
 *      We use a special Reme algorithm on [0,0.1716] to generate
 * 	a polynomial of degree 14 to approximate R The maximum error
 *	of this polynomial approximation is bounded by 2**-58.45. In
 *	other words,
 *		        2      4      6      8      10      12      14
 *	    R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
 *  	(the values of Lp1 to Lp7 are listed in the program)
 *	and
 *	    |      2          14          |     -58.45
 *	    | Lp1*s +...+Lp7*s    -  R(z) | <= 2
 *	    |                             |
 *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 *	In order to guarantee error in log below 1ulp, we compute log
 *	by
 *		log1p(f) = f - (hfsq - s*(hfsq+R)).
 *
 *	3. Finally, log1p(x) = k*ln2 + log1p(f).
 *		 	     = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
 *	   Here ln2 is split into two floating point number:
 *			ln2_hi + ln2_lo,
 *	   where n*ln2_hi is always exact for |n| < 2000.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~