1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
/******************************************************************************
** Filename: picofeat.c
** Purpose: Definition of pico-features.
** Author: Dan Johnson
**
** (c) Copyright Hewlett-Packard Company, 1988.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
******************************************************************************/
#include "picofeat.h"
#include "classify.h"
#include "featdefs.h"
#include "fpoint.h"
#include "mfoutline.h"
#include "ocrfeatures.h"
#include "params.h"
#include "trainingsample.h"
#include <cmath>
#include <cstdio>
namespace tesseract {
/*---------------------------------------------------------------------------
Variables
----------------------------------------------------------------------------*/
double_VAR(classify_pico_feature_length, 0.05, "Pico Feature Length");
/*---------------------------------------------------------------------------
Private Function Prototypes
----------------------------------------------------------------------------*/
void ConvertSegmentToPicoFeat(FPOINT *Start,
FPOINT *End,
FEATURE_SET FeatureSet);
void ConvertToPicoFeatures2(MFOUTLINE Outline, FEATURE_SET FeatureSet);
void NormalizePicoX(FEATURE_SET FeatureSet);
/*----------------------------------------------------------------------------
Public Code
----------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/**
* Operation: Dummy for now.
*
* Globals:
* - classify_norm_method normalization method currently specified
* @param Blob blob to extract pico-features from
* @return Pico-features for Blob.
*/
FEATURE_SET Classify::ExtractPicoFeatures(TBLOB *Blob) {
LIST Outlines;
LIST RemainingOutlines;
MFOUTLINE Outline;
FEATURE_SET FeatureSet;
float XScale, YScale;
FeatureSet = NewFeatureSet(MAX_PICO_FEATURES);
Outlines = ConvertBlob(Blob);
NormalizeOutlines(Outlines, &XScale, &YScale);
RemainingOutlines = Outlines;
iterate(RemainingOutlines) {
Outline = static_cast<MFOUTLINE>first_node (RemainingOutlines);
ConvertToPicoFeatures2(Outline, FeatureSet);
}
if (classify_norm_method == baseline)
NormalizePicoX(FeatureSet);
FreeOutlines(Outlines);
return (FeatureSet);
} /* ExtractPicoFeatures */
/*----------------------------------------------------------------------------
Private Code
----------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------*/
/**
* This routine converts an entire segment of an outline
* into a set of pico features which are added to
* FeatureSet. The length of the segment is rounded to the
* nearest whole number of pico-features. The pico-features
* are spaced evenly over the entire segment.
* Results are placed in FeatureSet.
* Globals:
* - classify_pico_feature_length length of a single pico-feature
* @param Start starting point of pico-feature
* @param End ending point of pico-feature
* @param FeatureSet set to add pico-feature to
*/
void ConvertSegmentToPicoFeat(FPOINT *Start,
FPOINT *End,
FEATURE_SET FeatureSet) {
FEATURE Feature;
float Angle;
float Length;
int NumFeatures;
FPOINT Center;
FPOINT Delta;
int i;
Angle = NormalizedAngleFrom (Start, End, 1.0);
Length = DistanceBetween (*Start, *End);
NumFeatures = static_cast<int>(floor (Length / classify_pico_feature_length + 0.5));
if (NumFeatures < 1)
NumFeatures = 1;
/* compute vector for one pico feature */
Delta.x = XDelta (*Start, *End) / NumFeatures;
Delta.y = YDelta (*Start, *End) / NumFeatures;
/* compute position of first pico feature */
Center.x = Start->x + Delta.x / 2.0;
Center.y = Start->y + Delta.y / 2.0;
/* compute each pico feature in segment and add to feature set */
for (i = 0; i < NumFeatures; i++) {
Feature = NewFeature (&PicoFeatDesc);
Feature->Params[PicoFeatDir] = Angle;
Feature->Params[PicoFeatX] = Center.x;
Feature->Params[PicoFeatY] = Center.y;
AddFeature(FeatureSet, Feature);
Center.x += Delta.x;
Center.y += Delta.y;
}
} /* ConvertSegmentToPicoFeat */
/*---------------------------------------------------------------------------*/
/**
* This routine steps through the specified outline and cuts it
* up into pieces of equal length. These pieces become the
* desired pico-features. Each segment in the outline
* is converted into an integral number of pico-features.
* Results are returned in FeatureSet.
*
* Globals:
* - classify_pico_feature_length length of features to be extracted
* @param Outline outline to extract micro-features from
* @param FeatureSet set of features to add pico-features to
*/
void ConvertToPicoFeatures2(MFOUTLINE Outline, FEATURE_SET FeatureSet) {
MFOUTLINE Next;
MFOUTLINE First;
MFOUTLINE Current;
if (DegenerateOutline(Outline))
return;
First = Outline;
Current = First;
Next = NextPointAfter(Current);
do {
/* note that an edge is hidden if the ending point of the edge is
marked as hidden. This situation happens because the order of
the outlines is reversed when they are converted from the old
format. In the old format, a hidden edge is marked by the
starting point for that edge. */
if (!(PointAt(Next)->Hidden))
ConvertSegmentToPicoFeat (&(PointAt(Current)->Point),
&(PointAt(Next)->Point), FeatureSet);
Current = Next;
Next = NextPointAfter(Current);
}
while (Current != First);
} /* ConvertToPicoFeatures2 */
/*---------------------------------------------------------------------------*/
/**
* This routine computes the average x position over all
* of the pico-features in FeatureSet and then renormalizes
* the pico-features to force this average to be the x origin
* (i.e. x=0).
* FeatureSet is changed.
* @param FeatureSet pico-features to be normalized
*/
void NormalizePicoX(FEATURE_SET FeatureSet) {
int i;
FEATURE Feature;
float Origin = 0.0;
for (i = 0; i < FeatureSet->NumFeatures; i++) {
Feature = FeatureSet->Features[i];
Origin += Feature->Params[PicoFeatX];
}
Origin /= FeatureSet->NumFeatures;
for (i = 0; i < FeatureSet->NumFeatures; i++) {
Feature = FeatureSet->Features[i];
Feature->Params[PicoFeatX] -= Origin;
}
} /* NormalizePicoX */
/*---------------------------------------------------------------------------*/
/**
* @param blob blob to extract features from
* @param fx_info
* @return Integer character-normalized features for blob.
*/
FEATURE_SET Classify::ExtractIntCNFeatures(
const TBLOB& blob, const INT_FX_RESULT_STRUCT& fx_info) {
INT_FX_RESULT_STRUCT local_fx_info(fx_info);
std::vector<INT_FEATURE_STRUCT> bl_features;
tesseract::TrainingSample* sample = tesseract::BlobToTrainingSample(
blob, false, &local_fx_info, &bl_features);
if (sample == nullptr) return nullptr;
uint32_t num_features = sample->num_features();
const INT_FEATURE_STRUCT* features = sample->features();
FEATURE_SET feature_set = NewFeatureSet(num_features);
for (uint32_t f = 0; f < num_features; ++f) {
FEATURE feature = NewFeature(&IntFeatDesc);
feature->Params[IntX] = features[f].X;
feature->Params[IntY] = features[f].Y;
feature->Params[IntDir] = features[f].Theta;
AddFeature(feature_set, feature);
}
delete sample;
return feature_set;
} /* ExtractIntCNFeatures */
/*---------------------------------------------------------------------------*/
/**
* @param blob blob to extract features from
* @param fx_info
* @return Geometric (top/bottom/width) features for blob.
*/
FEATURE_SET Classify::ExtractIntGeoFeatures(
const TBLOB& blob, const INT_FX_RESULT_STRUCT& fx_info) {
INT_FX_RESULT_STRUCT local_fx_info(fx_info);
std::vector<INT_FEATURE_STRUCT> bl_features;
tesseract::TrainingSample* sample = tesseract::BlobToTrainingSample(
blob, false, &local_fx_info, &bl_features);
if (sample == nullptr) return nullptr;
FEATURE_SET feature_set = NewFeatureSet(1);
FEATURE feature = NewFeature(&IntFeatDesc);
feature->Params[GeoBottom] = sample->geo_feature(GeoBottom);
feature->Params[GeoTop] = sample->geo_feature(GeoTop);
feature->Params[GeoWidth] = sample->geo_feature(GeoWidth);
AddFeature(feature_set, feature);
delete sample;
return feature_set;
} /* ExtractIntGeoFeatures */
} // namespace tesseract.
|