1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
/**********************************************************************
* File: points.cpp (Formerly coords.c)
* Description: Member functions for coordinate classes.
* Author: Ray Smith
*
* (C) Copyright 1991, Hewlett-Packard Ltd.
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
** http://www.apache.org/licenses/LICENSE-2.0
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*
**********************************************************************/
#define _USE_MATH_DEFINES // for M_PI
#include "points.h"
#include "helpers.h"
#include "serialis.h"
#include <algorithm>
#include <cmath> // for M_PI
#include <cstdlib>
namespace tesseract {
ELISTIZE (ICOORDELT) //turn to list
bool FCOORD::normalise() { //Convert to unit vec
float len = length ();
if (len < 0.0000000001) {
return false;
}
xcoord /= len;
ycoord /= len;
return true;
}
// Set from the given x,y, shrinking the vector to fit if needed.
void ICOORD::set_with_shrink(int x, int y) {
// Fit the vector into an ICOORD, which is 16 bit.
int factor = 1;
int max_extent = std::max(abs(x), abs(y));
if (max_extent > INT16_MAX)
factor = max_extent / INT16_MAX + 1;
xcoord = x / factor;
ycoord = y / factor;
}
// The fortran/basic sgn function returns -1, 0, 1 if x < 0, x == 0, x > 0
// respectively.
static int sign(int x) {
if (x < 0)
return -1;
else
return x > 0 ? 1 : 0;
}
// Writes to the given file. Returns false in case of error.
bool ICOORD::Serialize(FILE* fp) const {
return tesseract::Serialize(fp, &xcoord) &&
tesseract::Serialize(fp, &ycoord);
}
// Reads from the given file. Returns false in case of error.
// If swap is true, assumes a big/little-endian swap is needed.
bool ICOORD::DeSerialize(bool swap, FILE* fp) {
if (!tesseract::DeSerialize(fp, &xcoord)) return false;
if (!tesseract::DeSerialize(fp, &ycoord)) return false;
if (swap) {
ReverseN(&xcoord, sizeof(xcoord));
ReverseN(&ycoord, sizeof(ycoord));
}
return true;
}
// Setup for iterating over the pixels in a vector by the well-known
// Bresenham rendering algorithm.
// Starting with major/2 in the accumulator, on each step add major_step,
// and then add minor to the accumulator. When the accumulator >= major
// subtract major and step a minor step.
void ICOORD::setup_render(ICOORD* major_step, ICOORD* minor_step,
int* major, int* minor) const {
int abs_x = abs(xcoord);
int abs_y = abs(ycoord);
if (abs_x >= abs_y) {
// X-direction is major.
major_step->xcoord = sign(xcoord);
major_step->ycoord = 0;
minor_step->xcoord = 0;
minor_step->ycoord = sign(ycoord);
*major = abs_x;
*minor = abs_y;
} else {
// Y-direction is major.
major_step->xcoord = 0;
major_step->ycoord = sign(ycoord);
minor_step->xcoord = sign(xcoord);
minor_step->ycoord = 0;
*major = abs_y;
*minor = abs_x;
}
}
// Returns the standard feature direction corresponding to this.
// See binary_angle_plus_pi below for a description of the direction.
uint8_t FCOORD::to_direction() const {
return binary_angle_plus_pi(angle());
}
// Sets this with a unit vector in the given standard feature direction.
void FCOORD::from_direction(uint8_t direction) {
double radians = angle_from_direction(direction);
xcoord = cos(radians);
ycoord = sin(radians);
}
// Converts an angle in radians (from ICOORD::angle or FCOORD::angle) to a
// standard feature direction as an unsigned angle in 256ths of a circle
// measured anticlockwise from (-1, 0).
uint8_t FCOORD::binary_angle_plus_pi(double radians) {
return Modulo(IntCastRounded((radians + M_PI) * 128.0 / M_PI), 256);
}
// Inverse of binary_angle_plus_pi returns an angle in radians for the
// given standard feature direction.
double FCOORD::angle_from_direction(uint8_t direction) {
return direction * M_PI / 128.0 - M_PI;
}
// Returns the point on the given line nearest to this, ie the point such
// that the vector point->this is perpendicular to the line.
// The line is defined as a line_point and a dir_vector for its direction.
FCOORD FCOORD::nearest_pt_on_line(const FCOORD& line_point,
const FCOORD& dir_vector) const {
FCOORD point_vector(*this - line_point);
// The dot product (%) is |dir_vector||point_vector|cos theta, so dividing by
// the square of the length of dir_vector gives us the fraction of dir_vector
// to add to line1 to get the appropriate point, so
// result = line1 + lambda dir_vector.
double lambda = point_vector % dir_vector / dir_vector.sqlength();
return line_point + (dir_vector * lambda);
}
} // namespace tesseract
|