summaryrefslogtreecommitdiff
blob: 02d22451f17f45427d168cd94d7c8cceb7bbe2c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/******************************************************************
 * File:        superscript.cpp
 * Description: Correction pass to fix superscripts and subscripts.
 * Author:      David Eger
 *
 * (C) Copyright 2012, Google, Inc.
 ** Licensed under the Apache License, Version 2.0 (the "License");
 ** you may not use this file except in compliance with the License.
 ** You may obtain a copy of the License at
 ** http://www.apache.org/licenses/LICENSE-2.0
 ** Unless required by applicable law or agreed to in writing, software
 ** distributed under the License is distributed on an "AS IS" BASIS,
 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 ** See the License for the specific language governing permissions and
 ** limitations under the License.
 *
 **********************************************************************/

#include "normalis.h"
#include "tesseractclass.h"

namespace tesseract {

static int LeadingUnicharsToChopped(WERD_RES *word, int num_unichars) {
  int num_chopped = 0;
  for (int i = 0; i < num_unichars; i++)
    num_chopped += word->best_state[i];
  return num_chopped;
}

static int TrailingUnicharsToChopped(WERD_RES *word, int num_unichars) {
  int num_chopped = 0;
  for (int i = 0; i < num_unichars; i++)
    num_chopped += word->best_state[word->best_state.size() - 1 - i];
  return num_chopped;
}

/**
 * Given a recognized blob, see if a contiguous collection of sub-pieces
 * (chopped blobs) starting at its left might qualify as being a subscript
 * or superscript letter based only on y position.  Also do this for the
 * right side.
 */
static void YOutlierPieces(WERD_RES *word, int rebuilt_blob_index,
                           int super_y_bottom, int sub_y_top,
                           ScriptPos *leading_pos, int *num_leading_outliers,
                           ScriptPos *trailing_pos,
                           int *num_trailing_outliers) {
  ScriptPos sp_unused1, sp_unused2;
  int unused1, unused2;
  if (!leading_pos) leading_pos = &sp_unused1;
  if (!num_leading_outliers) num_leading_outliers = &unused1;
  if (!trailing_pos) trailing_pos = &sp_unused2;
  if (!num_trailing_outliers) num_trailing_outliers = &unused2;

  *num_leading_outliers = *num_trailing_outliers = 0;
  *leading_pos = *trailing_pos = SP_NORMAL;

  int chopped_start = LeadingUnicharsToChopped(word, rebuilt_blob_index);
  int num_chopped_pieces = word->best_state[rebuilt_blob_index];
  ScriptPos last_pos = SP_NORMAL;
  int trailing_outliers = 0;
  for (int i = 0; i < num_chopped_pieces; i++) {
    TBOX box = word->chopped_word->blobs[chopped_start + i]->bounding_box();
    ScriptPos pos = SP_NORMAL;
    if (box.bottom() >= super_y_bottom) {
      pos = SP_SUPERSCRIPT;
    } else if (box.top() <= sub_y_top) {
      pos = SP_SUBSCRIPT;
    }
    if (pos == SP_NORMAL) {
      if (trailing_outliers == i) {
        *num_leading_outliers = trailing_outliers;
        *leading_pos = last_pos;
      }
      trailing_outliers = 0;
    } else {
      if (pos == last_pos) {
        trailing_outliers++;
      } else {
        trailing_outliers = 1;
      }
    }
    last_pos = pos;
  }
  *num_trailing_outliers = trailing_outliers;
  *trailing_pos = last_pos;
}

/**
 * Attempt to split off any high (or low) bits at the ends of the word with poor
 * certainty and recognize them separately.  If the certainty gets much better
 * and other sanity checks pass, accept.
 *
 * This superscript fix is meant to be called in the second pass of recognition
 * when we have tried once and already have a preliminary answer for word.
 *
 * @return Whether we modified the given word.
 */
bool Tesseract::SubAndSuperscriptFix(WERD_RES *word) {
  if (word->tess_failed || word->word->flag(W_REP_CHAR) ||
      !word->best_choice) {
    return false;
  }
  int num_leading, num_trailing;
  ScriptPos sp_leading, sp_trailing;
  float leading_certainty, trailing_certainty;
  float avg_certainty, unlikely_threshold;

  // Calculate the number of whole suspicious characters at the edges.
  GetSubAndSuperscriptCandidates(
          word, &num_leading, &sp_leading, &leading_certainty,
          &num_trailing, &sp_trailing, &trailing_certainty,
          &avg_certainty, &unlikely_threshold);

  const char *leading_pos = sp_leading == SP_SUBSCRIPT ? "sub" : "super";
  const char *trailing_pos = sp_trailing == SP_SUBSCRIPT ? "sub" : "super";

  int num_blobs = word->best_choice->length();

  // Calculate the remainder (partial characters) at the edges.
  // This accounts for us having classified the best version of
  // a word as [speaker?'] when it was instead [speaker.^{21}]
  // (that is we accidentally thought the 2 was attached to the period).
  int num_remainder_leading = 0, num_remainder_trailing = 0;
  if (num_leading + num_trailing < num_blobs && unlikely_threshold < 0.0) {
    int super_y_bottom =
        kBlnBaselineOffset + kBlnXHeight * superscript_min_y_bottom;
    int sub_y_top =
        kBlnBaselineOffset + kBlnXHeight * subscript_max_y_top;
    int last_word_char = num_blobs - 1 - num_trailing;
    float last_char_certainty = word->best_choice->certainty(last_word_char);
    if (word->best_choice->unichar_id(last_word_char) != 0 &&
        last_char_certainty <= unlikely_threshold) {
      ScriptPos rpos;
      YOutlierPieces(word, last_word_char, super_y_bottom, sub_y_top,
                     nullptr, nullptr, &rpos, &num_remainder_trailing);
      if (num_trailing > 0 && rpos != sp_trailing) num_remainder_trailing = 0;
      if (num_remainder_trailing > 0 &&
          last_char_certainty < trailing_certainty) {
        trailing_certainty = last_char_certainty;
      }
    }
    bool another_blob_available = (num_remainder_trailing == 0) ||
        num_leading + num_trailing + 1 < num_blobs;
    int first_char_certainty = word->best_choice->certainty(num_leading);
    if (another_blob_available &&
        word->best_choice->unichar_id(num_leading) != 0 &&
        first_char_certainty <= unlikely_threshold) {
      ScriptPos lpos;
      YOutlierPieces(word, num_leading, super_y_bottom, sub_y_top,
                     &lpos, &num_remainder_leading, nullptr, nullptr);
      if (num_leading > 0 && lpos != sp_leading) num_remainder_leading = 0;
      if (num_remainder_leading > 0 &&
          first_char_certainty < leading_certainty) {
        leading_certainty = first_char_certainty;
      }
    }
  }

  // If nothing to do, bail now.
  if (num_leading + num_trailing +
      num_remainder_leading + num_remainder_trailing == 0) {
    return false;
  }

  if (superscript_debug >= 1) {
    tprintf("Candidate for superscript detection: %s (",
            word->best_choice->unichar_string().c_str());
    if (num_leading || num_remainder_leading) {
      tprintf("%d.%d %s-leading ", num_leading, num_remainder_leading,
              leading_pos);
    }
    if (num_trailing || num_remainder_trailing) {
      tprintf("%d.%d %s-trailing ", num_trailing, num_remainder_trailing,
              trailing_pos);
    }
    tprintf(")\n");
  }
  if (superscript_debug >= 3) {
    word->best_choice->print();
  }
  if (superscript_debug >= 2) {
    tprintf(" Certainties -- Average: %.2f  Unlikely thresh: %.2f  ",
            avg_certainty, unlikely_threshold);
    if (num_leading)
      tprintf("Orig. leading (min): %.2f  ", leading_certainty);
    if (num_trailing)
      tprintf("Orig. trailing (min): %.2f  ", trailing_certainty);
    tprintf("\n");
  }

  // We've now calculated the number of rebuilt blobs we want to carve off.
  // However, split_word() works from TBLOBs in chopped_word, so we need to
  // convert to those.
  int num_chopped_leading =
      LeadingUnicharsToChopped(word, num_leading) + num_remainder_leading;
  int num_chopped_trailing =
      TrailingUnicharsToChopped(word, num_trailing) + num_remainder_trailing;

  int retry_leading = 0;
  int retry_trailing = 0;
  bool is_good = false;
  WERD_RES *revised = TrySuperscriptSplits(
      num_chopped_leading, leading_certainty, sp_leading,
      num_chopped_trailing, trailing_certainty, sp_trailing,
      word, &is_good, &retry_leading, &retry_trailing);
  if (is_good) {
    word->ConsumeWordResults(revised);
  } else if (retry_leading || retry_trailing) {
    int retry_chopped_leading =
        LeadingUnicharsToChopped(revised, retry_leading);
    int retry_chopped_trailing =
        TrailingUnicharsToChopped(revised, retry_trailing);
    WERD_RES *revised2 = TrySuperscriptSplits(
        retry_chopped_leading, leading_certainty, sp_leading,
        retry_chopped_trailing, trailing_certainty, sp_trailing,
        revised, &is_good, &retry_leading, &retry_trailing);
    if (is_good) {
      word->ConsumeWordResults(revised2);
    }
    delete revised2;
  }
  delete revised;
  return is_good;
}

/**
 * Determine how many characters (rebuilt blobs) on each end of a given word
 * might plausibly be superscripts so SubAndSuperscriptFix can try to
 * re-recognize them.  Even if we find no whole blobs at either end,
 * we will set *unlikely_threshold to a certainty that might be used to
 * select "bad enough" outlier characters.  If *unlikely_threshold is set to 0,
 * though, there's really no hope.
 *
 * @param[in]  word    The word to examine.
 * @param[out] num_rebuilt_leading   the number of rebuilt blobs at the start
 *                                   of the word which are all up or down and
 *                                   seem badly classified.
 * @param[out] leading_pos        "super" or "sub" (for debugging)
 * @param[out] leading_certainty  the worst certainty in the leading blobs.
 * @param[out] num_rebuilt_trailing   the number of rebuilt blobs at the end
 *                                    of the word which are all up or down and
 *                                    seem badly classified.
 * @param[out] trailing_pos        "super" or "sub" (for debugging)
 * @param[out] trailing_certainty  the worst certainty in the trailing blobs.
 * @param[out] avg_certainty       the average certainty of "normal" blobs in
 *                                 the word.
 * @param[out] unlikely_threshold  the threshold (on certainty) we used to
 *                                 select "bad enough" outlier characters.
 */
void Tesseract::GetSubAndSuperscriptCandidates(const WERD_RES *word,
                                               int *num_rebuilt_leading,
                                               ScriptPos *leading_pos,
                                               float *leading_certainty,
                                               int *num_rebuilt_trailing,
                                               ScriptPos *trailing_pos,
                                               float *trailing_certainty,
                                               float *avg_certainty,
                                               float *unlikely_threshold) {
  *avg_certainty = *unlikely_threshold = 0.0f;
  *num_rebuilt_leading = *num_rebuilt_trailing = 0;
  *leading_certainty = *trailing_certainty = 0.0f;

  int super_y_bottom =
      kBlnBaselineOffset + kBlnXHeight * superscript_min_y_bottom;
  int sub_y_top =
      kBlnBaselineOffset + kBlnXHeight * subscript_max_y_top;

  // Step one: Get an average certainty for "normally placed" characters.

  // Counts here are of blobs in the rebuild_word / unichars in best_choice.
  *leading_pos = *trailing_pos = SP_NORMAL;
  int leading_outliers = 0;
  int trailing_outliers = 0;
  int num_normal = 0;
  float normal_certainty_total = 0.0f;
  float worst_normal_certainty = 0.0f;
  ScriptPos last_pos = SP_NORMAL;
  int num_blobs = word->rebuild_word->NumBlobs();
  for (int b = 0; b < num_blobs; ++b) {
    TBOX box = word->rebuild_word->blobs[b]->bounding_box();
    ScriptPos pos = SP_NORMAL;
    if (box.bottom() >= super_y_bottom) {
      pos = SP_SUPERSCRIPT;
    } else if (box.top() <= sub_y_top) {
      pos = SP_SUBSCRIPT;
    }
    if (pos == SP_NORMAL) {
      if (word->best_choice->unichar_id(b) != 0) {
        float char_certainty = word->best_choice->certainty(b);
        if (char_certainty < worst_normal_certainty) {
          worst_normal_certainty = char_certainty;
        }
        num_normal++;
        normal_certainty_total += char_certainty;
      }
      if (trailing_outliers == b) {
        leading_outliers = trailing_outliers;
        *leading_pos = last_pos;
      }
      trailing_outliers = 0;
    } else {
      if (last_pos == pos) {
        trailing_outliers++;
      } else {
        trailing_outliers = 1;
      }
    }
    last_pos = pos;
  }
  *trailing_pos = last_pos;
  if (num_normal >= 3) {  // throw out the worst as an outlier.
    num_normal--;
    normal_certainty_total -= worst_normal_certainty;
  }
  if (num_normal > 0) {
    *avg_certainty = normal_certainty_total / num_normal;
    *unlikely_threshold = superscript_worse_certainty * (*avg_certainty);
  }
  if (num_normal == 0 ||
      (leading_outliers == 0 && trailing_outliers == 0)) {
    return;
  }

  // Step two: Try to split off bits of the word that are both outliers
  //           and have much lower certainty than average
  // Calculate num_leading and leading_certainty.
  for (*leading_certainty = 0.0f, *num_rebuilt_leading = 0;
       *num_rebuilt_leading < leading_outliers;
       (*num_rebuilt_leading)++) {
    float char_certainty = word->best_choice->certainty(*num_rebuilt_leading);
    if (char_certainty > *unlikely_threshold) {
      break;
    }
    if (char_certainty < *leading_certainty) {
      *leading_certainty = char_certainty;
    }
  }

  // Calculate num_trailing and trailing_certainty.
  for (*trailing_certainty = 0.0f, *num_rebuilt_trailing = 0;
       *num_rebuilt_trailing < trailing_outliers;
       (*num_rebuilt_trailing)++) {
    int blob_idx = num_blobs - 1 - *num_rebuilt_trailing;
    float char_certainty = word->best_choice->certainty(blob_idx);
    if (char_certainty > *unlikely_threshold) {
      break;
    }
    if (char_certainty < *trailing_certainty) {
      *trailing_certainty = char_certainty;
    }
  }
}


/**
 * Try splitting off the given number of (chopped) blobs from the front and
 * back of the given word and recognizing the pieces.
 *
 * @param[in]  num_chopped_leading   how many chopped blobs from the left
 *                    end of the word to chop off and try recognizing as a
 *                    superscript (or subscript)
 * @param[in]  leading_certainty     the (minimum) certainty had by the
 *                    characters in the original leading section.
 * @param[in]  leading_pos    "super" or "sub" (for debugging)
 * @param[in]  num_chopped_trailing  how many chopped blobs from the right
 *                    end of the word to chop off and try recognizing as a
 *                    superscript (or subscript)
 * @param[in]  trailing_certainty    the (minimum) certainty had by the
 *                    characters in the original trailing section.
 * @param[in]  trailing_pos      "super" or "sub" (for debugging)
 * @param[in]  word              the word to try to chop up.
 * @param[out] is_good           do we believe our result?
 * @param[out] retry_rebuild_leading, retry_rebuild_trailing
 *         If non-zero, and !is_good, then the caller may have luck trying
 *         to split the returned word with this number of (rebuilt) leading
 *         and trailing blobs / unichars.
 * @return A word which is the result of re-recognizing as asked.
 */
WERD_RES *Tesseract::TrySuperscriptSplits(
    int num_chopped_leading, float leading_certainty, ScriptPos leading_pos,
    int num_chopped_trailing, float trailing_certainty,
    ScriptPos trailing_pos,
    WERD_RES *word,
    bool *is_good,
    int *retry_rebuild_leading, int *retry_rebuild_trailing) {
  int num_chopped = word->chopped_word->NumBlobs();

  *retry_rebuild_leading = *retry_rebuild_trailing = 0;

  // Chop apart the word into up to three pieces.

  BlamerBundle *bb0 = nullptr;
  BlamerBundle *bb1 = nullptr;
  WERD_RES *prefix = nullptr;
  WERD_RES *core = nullptr;
  WERD_RES *suffix = nullptr;
  if (num_chopped_leading > 0) {
    prefix = new WERD_RES(*word);
    split_word(prefix, num_chopped_leading, &core, &bb0);
  } else {
    core = new WERD_RES(*word);
  }

  if (num_chopped_trailing > 0) {
    int split_pt = num_chopped - num_chopped_trailing - num_chopped_leading;
    split_word(core, split_pt, &suffix, &bb1);
  }

  //  Recognize the pieces in turn.
  int saved_cp_multiplier = classify_class_pruner_multiplier;
  int saved_im_multiplier = classify_integer_matcher_multiplier;
  if (prefix) {
    // Turn off Tesseract's y-position penalties for the leading superscript.
    classify_class_pruner_multiplier.set_value(0);
    classify_integer_matcher_multiplier.set_value(0);

    // Adjust our expectations about the baseline for this prefix.
    if (superscript_debug >= 3) {
      tprintf(" recognizing first %d chopped blobs\n", num_chopped_leading);
    }
    recog_word_recursive(prefix);
    if (superscript_debug >= 2) {
      tprintf(" The leading bits look like %s %s\n",
              ScriptPosToString(leading_pos),
              prefix->best_choice->unichar_string().c_str());
    }

    // Restore the normal y-position penalties.
    classify_class_pruner_multiplier.set_value(saved_cp_multiplier);
    classify_integer_matcher_multiplier.set_value(saved_im_multiplier);
  }

  if (superscript_debug >= 3) {
    tprintf(" recognizing middle %d chopped blobs\n",
            num_chopped - num_chopped_leading - num_chopped_trailing);
  }

  if (suffix) {
    // Turn off Tesseract's y-position penalties for the trailing superscript.
    classify_class_pruner_multiplier.set_value(0);
    classify_integer_matcher_multiplier.set_value(0);

    if (superscript_debug >= 3) {
      tprintf(" recognizing last %d chopped blobs\n", num_chopped_trailing);
    }
    recog_word_recursive(suffix);
    if (superscript_debug >= 2) {
      tprintf(" The trailing bits look like %s %s\n",
              ScriptPosToString(trailing_pos),
              suffix->best_choice->unichar_string().c_str());
    }

    // Restore the normal y-position penalties.
    classify_class_pruner_multiplier.set_value(saved_cp_multiplier);
    classify_integer_matcher_multiplier.set_value(saved_im_multiplier);
  }

  // Evaluate whether we think the results are believably better
  // than what we already had.
  bool good_prefix = !prefix || BelievableSuperscript(
      superscript_debug >= 1, *prefix,
      superscript_bettered_certainty * leading_certainty,
      retry_rebuild_leading, nullptr);
  bool good_suffix = !suffix || BelievableSuperscript(
      superscript_debug >= 1, *suffix,
      superscript_bettered_certainty * trailing_certainty,
      nullptr, retry_rebuild_trailing);

  *is_good = good_prefix && good_suffix;
  if (!*is_good && !*retry_rebuild_leading && !*retry_rebuild_trailing) {
    // None of it is any good. Quit now.
    delete core;
    delete prefix;
    delete suffix;
    delete bb1;
    return nullptr;
  }
  recog_word_recursive(core);

  // Now paste the results together into core.
  if (suffix) {
    suffix->SetAllScriptPositions(trailing_pos);
    join_words(core, suffix, bb1);
  }
  if (prefix) {
    prefix->SetAllScriptPositions(leading_pos);
    join_words(prefix, core, bb0);
    core = prefix;
    prefix = nullptr;
  }

  if (superscript_debug >= 1) {
    tprintf("%s superscript fix: %s\n", *is_good ? "ACCEPT" : "REJECT",
            core->best_choice->unichar_string().c_str());
  }
  return core;
}


/**
 * Return whether this is believable superscript or subscript text.
 *
 * We insist that:
 *   + there are no punctuation marks.
 *   + there are no italics.
 *   + no normal-sized character is smaller than superscript_scaledown_ratio
 *     of what it ought to be, and
 *   + each character is at least as certain as certainty_threshold.
 *
 *  @param[in]  debug  If true, spew debug output
 *  @param[in]  word   The word whose best_choice we're evaluating
 *  @param[in]  certainty_threshold   If any of the characters have less
 *                    certainty than this, reject.
 *  @param[out]  left_ok  How many left-side characters were ok?
 *  @param[out]  right_ok  How many right-side characters were ok?
 *  @return  Whether the complete best choice is believable as a superscript.
 */
bool Tesseract::BelievableSuperscript(bool debug,
                                      const WERD_RES &word,
                                      float certainty_threshold,
                                      int *left_ok,
                                      int *right_ok) const {
  int initial_ok_run_count = 0;
  int ok_run_count = 0;
  float worst_certainty = 0.0f;
  const WERD_CHOICE &wc = *word.best_choice;

  const UnicityTable<FontInfo>& fontinfo_table = get_fontinfo_table();
  for (int i = 0; i < wc.length(); i++) {
    TBLOB *blob = word.rebuild_word->blobs[i];
    UNICHAR_ID unichar_id = wc.unichar_id(i);
    float char_certainty = wc.certainty(i);
    bool bad_certainty = char_certainty < certainty_threshold;
    bool is_punc = wc.unicharset()->get_ispunctuation(unichar_id);
    bool is_italic = word.fontinfo && word.fontinfo->is_italic();
    BLOB_CHOICE *choice = word.GetBlobChoice(i);
    if (choice && fontinfo_table.size() > 0) {
      // Get better information from the specific choice, if available.
      int font_id1 = choice->fontinfo_id();
      bool font1_is_italic = font_id1 >= 0
          ? fontinfo_table.get(font_id1).is_italic() : false;
      int font_id2 = choice->fontinfo_id2();
      is_italic = font1_is_italic &&
          (font_id2 < 0 || fontinfo_table.get(font_id2).is_italic());
    }

    float height_fraction = 1.0f;
    float char_height = blob->bounding_box().height();
    float normal_height = char_height;
    if (wc.unicharset()->top_bottom_useful()) {
      int min_bot, max_bot, min_top, max_top;
      wc.unicharset()->get_top_bottom(unichar_id,
                                      &min_bot, &max_bot,
                                      &min_top, &max_top);
      float hi_height = max_top - max_bot;
      float lo_height = min_top - min_bot;
      normal_height = (hi_height + lo_height) / 2;
      if (normal_height >= kBlnXHeight) {
        // Only ding characters that we have decent information for because
        // they're supposed to be normal sized, not tiny specks or dashes.
        height_fraction = char_height / normal_height;
      }
    }
    bool bad_height = height_fraction < superscript_scaledown_ratio;

    if (debug) {
      if (is_italic) {
        tprintf(" Rejecting: superscript is italic.\n");
      }
      if (is_punc) {
        tprintf(" Rejecting: punctuation present.\n");
      }
      const char *char_str = wc.unicharset()->id_to_unichar(unichar_id);
      if (bad_certainty) {
        tprintf(" Rejecting: don't believe character %s with certainty %.2f "
                "which is less than threshold %.2f\n", char_str,
                char_certainty, certainty_threshold);
      }
      if (bad_height) {
        tprintf(" Rejecting: character %s seems too small @ %.2f versus "
                "expected %.2f\n", char_str, char_height, normal_height);
      }
    }
    if (bad_certainty || bad_height || is_punc || is_italic) {
      if (ok_run_count == i) {
        initial_ok_run_count = ok_run_count;
      }
      ok_run_count = 0;
    } else {
      ok_run_count++;
    }
    if (char_certainty < worst_certainty) {
      worst_certainty = char_certainty;
    }
  }
  bool all_ok = ok_run_count == wc.length();
  if (all_ok && debug) {
    tprintf(" Accept: worst revised certainty is %.2f\n", worst_certainty);
  }
  if (!all_ok) {
    if (left_ok) *left_ok = initial_ok_run_count;
    if (right_ok) *right_ok = ok_run_count;
  }
  return all_ok;
}


}  // namespace tesseract