1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/* Copyright (C) 2001-2019 Artifex Software, Inc.
All Rights Reserved.
This software is provided AS-IS with no warranty, either express or
implied.
This software is distributed under license and may not be copied,
modified or distributed except as expressly authorized under the terms
of the license contained in the file LICENSE in this distribution.
Refer to licensing information at http://www.artifex.com or contact
Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato,
CA 94945, U.S.A., +1(415)492-9861, for further information.
*/
/* Configurable algorithm for filling a slanted trapezoid. */
/*
* Since we need several statically defined variants of this agorithm,
* we store it in .h file and include it several times into gxfill.c .
* Configuration macros (template arguments) are :
*
* FILL_DIRECT - See LOOP_FILL_RECTANGLE_DIRECT.
* TEMPLATE_slant_into_trapezoids - the name of the procedure to generate.
* TRY_TO_EXTEND_TRAP - whether we do some extra maths to see if we can
* extend a trapezoid to reduce the total number produced.
*/
#if defined(LOOP_FILL_RECTANGLE_DIRECT) && defined(TEMPLATE_slant_into_trapezoids) && defined(TRY_TO_EXTEND_TRAP)
static inline int
TEMPLATE_slant_into_trapezoids (const line_list *ll,
const active_line *flp, const active_line *alp, fixed y, fixed y1)
{
/*
* We want to get the effect of filling an area whose
* outline is formed by dragging a square of side adj2
* along the border of the trapezoid. This is *not*
* equivalent to simply expanding the corners by
* adjust: There are 3 cases needing different
* algorithms, plus rectangles as a fast special case.
*/
const fill_options * const fo = ll->fo;
gs_fixed_edge le, re;
int code = 0;
/*
* Define a faster test for
* fixed2int_pixround(y - below) != fixed2int_pixround(y + above)
* where we know
* 0 <= below <= _fixed_pixround_v,
* 0 <= above <= min(fixed_half, fixed_1 - below).
* Subtracting out the integer parts, this is equivalent to
* fixed2int_pixround(fixed_fraction(y) - below) !=
* fixed2int_pixround(fixed_fraction(y) + above)
* or to
* fixed2int(fixed_fraction(y) + _fixed_pixround_v - below) !=
* fixed2int(fixed_fraction(y) + _fixed_pixround_v + above)
* Letting A = _fixed_pixround_v - below and B = _fixed_pixround_v + above,
* we can rewrite this as
* fixed2int(fixed_fraction(y) + A) != fixed2int(fixed_fraction(y) + B)
* Because of the range constraints given above, this is true precisely when
* fixed_fraction(y) + A < fixed_1 && fixed_fraction(y) + B >= fixed_1
* or equivalently
* fixed_fraction(y + B) < B - A.
* i.e.
* fixed_fraction(y + _fixed_pixround_v + above) < below + above
*/
fixed y_span_delta = _fixed_pixround_v + fo->adjust_above;
fixed y_span_limit = fo->adjust_below + fo->adjust_above;
le.start.x = flp->start.x - fo->adjust_left;
le.end.x = flp->end.x - fo->adjust_left;
re.start.x = alp->start.x + fo->adjust_right;
re.end.x = alp->end.x + fo->adjust_right;
#define ADJUSTED_Y_SPANS_PIXEL(y)\
(fixed_fraction((y) + y_span_delta) < y_span_limit)
if ((le.end.x == le.start.x) && (re.end.x == re.start.x)) {
/* Rectangle. */
le.start.x = fixed2int_pixround(le.start.x);
le.start.y = fixed2int_pixround(y - fo->adjust_below);
re.start.x = fixed2int_pixround(re.start.x);
re.start.y = fixed2int_pixround(y1 + fo->adjust_above);
return LOOP_FILL_RECTANGLE_DIRECT(fo, le.start.x, le.start.y,
re.start.x-le.start.x, re.start.y-le.start.y);
} else if ((le.end.x <= le.start.x) && (re.end.x >= re.start.x)) {
/* Top wider than bottom. */
le.start.y = flp->start.y - fo->adjust_below;
le.end.y = flp->end.y - fo->adjust_below;
re.start.y = alp->start.y - fo->adjust_below;
re.end.y = alp->end.y - fo->adjust_below;
if (ADJUSTED_Y_SPANS_PIXEL(y1)) {
/* Strictly speaking the area we want to fill is a rectangle sat
* atop a trapezoid. For some platforms, it would be cheaper to
* just emit a single trap if we can get away with it. */
int xli = fixed2int_var_pixround(flp->x_next - fo->adjust_left);
int xri = fixed2int_var_pixround(alp->x_next + fo->adjust_right);
if (TRY_TO_EXTEND_TRAP) {
int newxl, newxr;
/* Find the two X extents at the new top position */
newxl = le.start.x - (fixed)
(((int64_t)(le.start.x-le.end.x))*
((int64_t)(y1 + fo->adjust_above-le.start.y))+
(le.end.y-le.start.y-1))/(le.end.y-le.start.y);
newxr = re.start.x + (fixed)
(((int64_t)(re.end.x-re.start.x))*
((int64_t)(y1 + fo->adjust_above-re.start.y))+
(re.end.y-re.start.y-1))/(re.end.y-re.start.y);
/* If extending the trap covers the same pixels as the
* rectangle would have done, then just plot it! */
if ((fixed2int_var_pixround(newxl) == xli) &&
(fixed2int_var_pixround(newxr) == xri)) {
gs_fixed_edge newle, newre;
newle.start.x = le.start.x;
newle.start.y = le.start.y;
newle.end.x = le.end.x;
newle.end.y = le.end.y;
while (newle.end.y < y1 + fo->adjust_above) {
newle.end.x -= le.start.x-le.end.x;
newle.end.y += le.end.y-le.start.y;
}
newre.start.x = re.start.x;
newre.start.y = re.start.y;
newre.end.x = re.end.x;
newre.end.y = re.end.y;
while (newre.end.y < y1 + fo->adjust_above) {
newre.end.x += re.end.x-re.start.x;
newre.end.y += re.end.y-re.start.y;
}
return loop_fill_trap_np(ll, &newle, &newre,
y - fo->adjust_below, y1 + fo->adjust_above);
}
}
/* Otherwise we'll emit the rectangle and then the trap */
INCR(afill);
code = LOOP_FILL_RECTANGLE_DIRECT(fo,
xli, fixed2int_pixround(y1 - fo->adjust_below),
xri - xli, 1);
if (code < 0)
return code;
}
return loop_fill_trap_np(ll, &le, &re, y - fo->adjust_below, y1 - fo->adjust_below);
} else if ((le.end.x >= le.start.x) && (re.end.x <= re.start.x)) {
/* Bottom wider than top. */
le.start.y = flp->start.y + fo->adjust_above;
le.end.y = flp->end.y + fo->adjust_above;
re.start.y = alp->start.y + fo->adjust_above;
re.end.y = alp->end.y + fo->adjust_above;
if (ADJUSTED_Y_SPANS_PIXEL(y)) {
/* Strictly speaking the area we want to fill is a trapezoid sat
* atop a rectangle. For some platforms, it would be cheaper to
* just emit a single trap if we can get away with it. */
int xli = fixed2int_var_pixround(flp->x_current - fo->adjust_left);
int xri = fixed2int_var_pixround(alp->x_current + fo->adjust_right);
if (TRY_TO_EXTEND_TRAP) {
int newxl, newxr;
/* Find the two X extents at the new bottom position */
newxl = le.end.x - (fixed)
(((int64_t)(le.end.x-le.start.x))*
((int64_t)(le.end.y-(y - fo->adjust_below)))+
(le.end.y-le.start.y+1))/(le.end.y-le.start.y);
newxr = re.end.x + (fixed)
(((int64_t)(re.start.x-re.end.x))*
((int64_t)(re.end.y-(y - fo->adjust_below)))+
(re.end.y-re.start.y+1))/(re.end.y-re.start.y);
/* If extending the trap covers the same pixels as the
* rectangle would have done, then just plot it! */
if ((fixed2int_var_pixround(newxl) == xli) &&
(fixed2int_var_pixround(newxr) == xri)) {
gs_fixed_edge newle, newre;
newle.start.x = le.start.x;
newle.start.y = le.start.y;
newle.end.x = le.end.x;
newle.end.y = le.end.y;
while (newle.start.y > y - fo->adjust_below) {
newle.start.x -= le.end.x-le.start.x;
newle.start.y -= le.end.y-le.start.y;
}
newre.start.x = re.start.x;
newre.start.y = re.start.y;
newre.end.x = re.end.x;
newre.end.y = re.end.y;
while (newre.start.y > y - fo->adjust_below) {
newre.start.x += re.start.x-re.end.x;
newre.start.y -= re.end.y-re.start.y;
}
return loop_fill_trap_np(ll, &newle, &newre,
y - fo->adjust_below, y1 + fo->adjust_above);
}
}
/* Otherwise we'll emit the rectangle and then the trap */
INCR(afill);
code = LOOP_FILL_RECTANGLE_DIRECT(fo,
xli, fixed2int_pixround(y - fo->adjust_below),
xri - xli, 1);
if (code < 0)
return code;
}
return loop_fill_trap_np(ll, &le, &re, y + fo->adjust_above, y1 + fo->adjust_above);
}
/* Otherwise, handle it as a slanted trapezoid. */
return fill_slant_adjust(ll, flp, alp, y, y1);
}
#else
int dummy;
#endif
|