summaryrefslogtreecommitdiff
blob: 6de41259d853fe3047bfa923bef4d7ee3354b62f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
/* Copyright (C) 2001-2019 Artifex Software, Inc.
   All Rights Reserved.

   This software is provided AS-IS with no warranty, either express or
   implied.

   This software is distributed under license and may not be copied,
   modified or distributed except as expressly authorized under the terms
   of the license contained in the file LICENSE in this distribution.

   Refer to licensing information at http://www.artifex.com or contact
   Artifex Software, Inc.,  1305 Grant Avenue - Suite 200, Novato,
   CA 94945, U.S.A., +1(415)492-9861, for further information.
*/


/* Implementation of FunctionType 0 (Sampled) Functions */
#include "math_.h"
#include "gx.h"
#include "gserrors.h"
#include "gsfunc0.h"
#include "gsparam.h"
#include "gxfarith.h"
#include "gxfunc.h"
#include "stream.h"
#include "gsccolor.h"           /* Only for GS_CLIENT_COLOR_MAX_COMPONENTS */

#define POLE_CACHE_DEBUG 0      /* A temporary development technology need.
                                   Remove after the beta testing. */
#define POLE_CACHE_GENERIC_1D 1 /* A temporary development technology need.
                                   Didn't decide yet - see fn_Sd_evaluate_cubic_cached_1d. */
#define POLE_CACHE_IGNORE 0     /* A temporary development technology need.
                                   Remove after the beta testing. */

#define MAX_FAST_COMPS 8

typedef struct gs_function_Sd_s {
    gs_function_head_t head;
    gs_function_Sd_params_t params;
} gs_function_Sd_t;

/* GC descriptor */
private_st_function_Sd();
static
ENUM_PTRS_WITH(function_Sd_enum_ptrs, gs_function_Sd_t *pfn)
{
    index -= 6;
    if (index < st_data_source_max_ptrs)
        return ENUM_USING(st_data_source, &pfn->params.DataSource,
                          sizeof(pfn->params.DataSource), index);
    return ENUM_USING_PREFIX(st_function, st_data_source_max_ptrs);
}
ENUM_PTR3(0, gs_function_Sd_t, params.Encode, params.Decode, params.Size);
ENUM_PTR3(3, gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
ENUM_PTRS_END
static
RELOC_PTRS_WITH(function_Sd_reloc_ptrs, gs_function_Sd_t *pfn)
{
    RELOC_PREFIX(st_function);
    RELOC_USING(st_data_source, &pfn->params.DataSource,
                sizeof(pfn->params.DataSource));
    RELOC_PTR3(gs_function_Sd_t, params.Encode, params.Decode, params.Size);
    RELOC_PTR3(gs_function_Sd_t, params.pole, params.array_step, params.stream_step);
}
RELOC_PTRS_END

/* Define the maximum plausible number of inputs and outputs */
/* for a Sampled function. */
#ifndef GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS		/* Allow override with XCFLAGS */
#  define max_Sd_m GS_CLIENT_COLOR_MAX_COMPONENTS
#  define max_Sd_n GS_CLIENT_COLOR_MAX_COMPONENTS
#else
#  define max_Sd_m GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
#  define max_Sd_n GS_CLIENT_SAMPLED_FN_MAX_COMPONENTS
#endif

/* Get one set of sample values. */
#define SETUP_SAMPLES(bps, nbytes)\
        int n = pfn->params.n;\
        byte buf[max_Sd_n * ((bps + 7) >> 3)];\
        const byte *p;\
        int i;\
\
        data_source_access(&pfn->params.DataSource, offset >> 3,\
                           nbytes, buf, &p)

static int
fn_gets_1(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
    SETUP_SAMPLES(1, ((offset & 7) + n + 7) >> 3);
    for (i = 0; i < n; ++i) {
        samples[i] = (*p >> (~offset & 7)) & 1;
        if (!(++offset & 7))
            p++;
    }
    return 0;
}
static int
fn_gets_2(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
    SETUP_SAMPLES(2, (((offset & 7) >> 1) + n + 3) >> 2);
    for (i = 0; i < n; ++i) {
        samples[i] = (*p >> (6 - (offset & 7))) & 3;
        if (!((offset += 2) & 7))
            p++;
    }
    return 0;
}
static int
fn_gets_4(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
    SETUP_SAMPLES(4, (((offset & 7) >> 2) + n + 1) >> 1);
    for (i = 0; i < n; ++i) {
        samples[i] = ((offset ^= 4) & 4 ? *p >> 4 : *p++ & 0xf);
    }
    return 0;
}
static int
fn_gets_8(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
    SETUP_SAMPLES(8, n);
    for (i = 0; i < n; ++i) {
        samples[i] = *p++;
    }
    return 0;
}
static int
fn_gets_12(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
    SETUP_SAMPLES(12, (((offset & 7) >> 2) + 3 * n + 1) >> 1);
    for (i = 0; i < n; ++i) {
        if (offset & 4)
            samples[i] = ((*p & 0xf) << 8) + p[1], p += 2;
        else
            samples[i] = (*p << 4) + (p[1] >> 4), p++;
        offset ^= 4;
    }
    return 0;
}
static int
fn_gets_16(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
    SETUP_SAMPLES(16, n * 2);
    for (i = 0; i < n; ++i) {
        samples[i] = (*p << 8) + p[1];
        p += 2;
    }
    return 0;
}
static int
fn_gets_24(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
    SETUP_SAMPLES(24, n * 3);
    for (i = 0; i < n; ++i) {
        samples[i] = (*p << 16) + (p[1] << 8) + p[2];
        p += 3;
    }
    return 0;
}
static int
fn_gets_32(const gs_function_Sd_t * pfn, ulong offset, uint * samples)
{
    SETUP_SAMPLES(32, n * 4);
    for (i = 0; i < n; ++i) {
        samples[i] = (*p << 24) + (p[1] << 16) + (p[2] << 8) + p[3];
        p += 4;
    }
    return 0;
}

static int (*const fn_get_samples[]) (const gs_function_Sd_t * pfn,
                                       ulong offset, uint * samples) =
{
    0, fn_gets_1, fn_gets_2, 0, fn_gets_4, 0, 0, 0,
        fn_gets_8, 0, 0, 0, fn_gets_12, 0, 0, 0,
        fn_gets_16, 0, 0, 0, 0, 0, 0, 0,
        fn_gets_24, 0, 0, 0, 0, 0, 0, 0,
        fn_gets_32
};

/*
 * Compute a value by cubic interpolation.
 * f[] = f(0), f(1), f(2), f(3); 1 < x < 2.
 * The formula is derived from those presented in
 * http://www.cs.uwa.edu.au/undergraduate/units/233.413/Handouts/Lecture04.html
 * (thanks to Raph Levien for the reference).
 */
static double
interpolate_cubic(double x, double f0, double f1, double f2, double f3)
{
    /*
     * The parameter 'a' affects the contribution of the high-frequency
     * components.  The abovementioned source suggests a = -0.5.
     */
#define a (-0.5)
#define SQR(v) ((v) * (v))
#define CUBE(v) ((v) * (v) * (v))
    const double xm1 = x - 1, m2x = 2 - x, m3x = 3 - x;
    const double c =
        (a * CUBE(x) - 5 * a * SQR(x) + 8 * a * x - 4 * a) * f0 +
        ((a+2) * CUBE(xm1) - (a+3) * SQR(xm1) + 1) * f1 +
        ((a+2) * CUBE(m2x) - (a+3) * SQR(m2x) + 1) * f2 +
        (a * CUBE(m3x) - 5 * a * SQR(m3x) + 8 * a * m3x - 4 * a) * f3;

    if_debug6('~', "[~](%g, %g, %g, %g)order3(%g) => %g\n",
              f0, f1, f2, f3, x, c);
    return c;
#undef a
#undef SQR
#undef CUBE
}

/*
 * Compute a value by quadratic interpolation.
 * f[] = f(0), f(1), f(2); 0 < x < 1.
 *
 * We used to use a quadratic formula for this, derived from
 * f(0) = f0, f(1) = f1, f'(1) = (f2 - f0) / 2, but now we
 * match what we believe is Acrobat Reader's behavior.
 */
static inline double
interpolate_quadratic(double x, double f0, double f1, double f2)
{
    return interpolate_cubic(x + 1, f0, f0, f1, f2);
}

/* Calculate a result by multicubic interpolation. */
static void
fn_interpolate_cubic(const gs_function_Sd_t *pfn, const float *fparts,
                     const int *iparts, const ulong *factors,
                     float *samples, ulong offset, int m)
{
    int j;

top:
    if (m == 0) {
        uint sdata[max_Sd_n];

        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
        for (j = pfn->params.n - 1; j >= 0; --j)
            samples[j] = (float)sdata[j];
    } else {
        float fpart = *fparts++;
        int ipart = *iparts++;
        ulong delta = *factors++;
        int size = pfn->params.Size[pfn->params.m - m];
        float samples1[max_Sd_n], samplesm1[max_Sd_n], samples2[max_Sd_n];

        --m;
        if (is_fzero(fpart))
            goto top;
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples,
                             offset, m);
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samples1,
                             offset + delta, m);
        /* Ensure we don't try to access out of bounds. */
        /*
         * If size == 1, the only possible value for ipart and fpart is
         * 0, so we've already handled this case.
         */
        if (size == 2) {	/* ipart = 0 */
            /* Use linear interpolation. */
            for (j = pfn->params.n - 1; j >= 0; --j)
                samples[j] += (samples1[j] - samples[j]) * fpart;
            return;
        }
        if (ipart == 0) {
            /* Use quadratic interpolation. */
            fn_interpolate_cubic(pfn, fparts, iparts, factors,
                                 samples2, offset + delta * 2, m);
            for (j = pfn->params.n - 1; j >= 0; --j)
                samples[j] =
                    interpolate_quadratic(fpart, samples[j],
                                          samples1[j], samples2[j]);
            return;
        }
        /* At this point we know ipart > 0, size >= 3. */
        fn_interpolate_cubic(pfn, fparts, iparts, factors, samplesm1,
                             offset - delta, m);
        if (ipart == size - 2) {
            /* Use quadratic interpolation. */
            for (j = pfn->params.n - 1; j >= 0; --j)
                samples[j] =
                    interpolate_quadratic(1 - fpart, samples1[j],
                                          samples[j], samplesm1[j]);
            return;
        }
        /* Now we know 0 < ipart < size - 2, size > 3. */
        fn_interpolate_cubic(pfn, fparts, iparts, factors,
                             samples2, offset + delta * 2, m);
        for (j = pfn->params.n - 1; j >= 0; --j)
            samples[j] =
                interpolate_cubic(fpart + 1, samplesm1[j], samples[j],
                                  samples1[j], samples2[j]);
    }
}

/* Calculate a result by multilinear interpolation. */
static void
fn_interpolate_linear(const gs_function_Sd_t *pfn, const float *fparts,
                 const ulong *factors, float *samples, ulong offset, int m)
{
    int j;

top:
    if (m == 0) {
        uint sdata[max_Sd_n];

        (*fn_get_samples[pfn->params.BitsPerSample])(pfn, offset, sdata);
        for (j = pfn->params.n - 1; j >= 0; --j)
            samples[j] = (float)sdata[j];
    } else {
        float fpart = *fparts++;
        float samples1[max_Sd_n];

        if (is_fzero(fpart)) {
            ++factors;
            --m;
            goto top;
        }
        fn_interpolate_linear(pfn, fparts, factors + 1, samples,
                              offset, m - 1);
        fn_interpolate_linear(pfn, fparts, factors + 1, samples1,
                              offset + *factors, m - 1);
        for (j = pfn->params.n - 1; j >= 0; --j)
            samples[j] += (samples1[j] - samples[j]) * fpart;
    }
}

static inline double
fn_Sd_encode(const gs_function_Sd_t *pfn, int i, double sample)
{
    float d0, d1, r0, r1;
    double value;
    int bps = pfn->params.BitsPerSample;
    /* x86 machines have problems with shifts if bps >= 32 */
    uint max_samp = (bps < (sizeof(uint) * 8)) ? ((1 << bps) - 1) : max_uint;

    if (pfn->params.Range)
        r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1];
    else
        r0 = 0, r1 = (float)max_samp;
    if (pfn->params.Decode)
        d0 = pfn->params.Decode[2 * i], d1 = pfn->params.Decode[2 * i + 1];
    else
        d0 = r0, d1 = r1;

    value = sample * (d1 - d0) / max_samp + d0;
    if (value < r0)
        value = r0;
    else if (value > r1)
        value = r1;
    return value;
}

/* Evaluate a Sampled function. */
/* A generic algorithm with a recursion by dimentions. */
static int
fn_Sd_evaluate_general(const gs_function_t * pfn_common, const float *in, float *out)
{
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
    int bps = pfn->params.BitsPerSample;
    ulong offset = 0;
    int i;
    float encoded[max_Sd_m];
    int iparts[max_Sd_m];	/* only needed for cubic interpolation */
    ulong factors[max_Sd_m];
    float samples[max_Sd_n];

    /* Encode the input values. */

    for (i = 0; i < pfn->params.m; ++i) {
        float d0 = pfn->params.Domain[2 * i],
            d1 = pfn->params.Domain[2 * i + 1];
        float arg = in[i], enc;

        if (arg < d0)
            arg = d0;
        else if (arg > d1)
            arg = d1;
        if (pfn->params.Encode) {
            float e0 = pfn->params.Encode[2 * i];
            float e1 = pfn->params.Encode[2 * i + 1];

            enc = (arg - d0) * (e1 - e0) / (d1 - d0) + e0;
            if (enc < 0)
                encoded[i] = 0;
            else if (enc >= pfn->params.Size[i] - 1)
                encoded[i] = (float)pfn->params.Size[i] - 1;
            else
                encoded[i] = enc;
        } else {
            /* arg is guaranteed to be in bounds, ergo so is enc */
                /* TODO: possible issue here.  if (pfn->params.Size[i] == 1 */
            encoded[i] = (arg - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
        }
    }

    /* Look up and interpolate the output values. */

    {
        ulong factor = bps * pfn->params.n;

        for (i = 0; i < pfn->params.m; factor *= pfn->params.Size[i++]) {
            int ipart = (int)encoded[i];

            offset += (factors[i] = factor) * ipart;
            iparts[i] = ipart;	/* only needed for cubic interpolation */
            encoded[i] -= ipart;
        }
    }
    if (pfn->params.Order == 3)
        fn_interpolate_cubic(pfn, encoded, iparts, factors, samples,
                             offset, pfn->params.m);
    else
        fn_interpolate_linear(pfn, encoded, factors, samples, offset,
                              pfn->params.m);

    /* Encode the output values. */

    for (i = 0; i < pfn->params.n; ++i)
        out[i] = (float)fn_Sd_encode(pfn, i, samples[i]);

    return 0;
}

static const double double_stub = 1e90;

static inline void
fn_make_cubic_poles(double *p, double f0, double f1, double f2, double f3,
            const int pole_step_minor)
{   /* The following is poles of the polinomial,
       which represents interpolate_cubic in [1,2]. */
    const double a = -0.5;

    p[pole_step_minor * 1] = (a*f0 + 3*f1 - a*f2)/3.0;
    p[pole_step_minor * 2] = (-a*f1 + 3*f2 + a*f3)/3.0;
}

static void
fn_make_poles(double *p, const int pole_step, int power, int bias)
{
    const int pole_step_minor = pole_step / 3;
    switch(power) {
        case 1: /* A linear 3d power curve. */
            /* bias must be 0. */
            p[pole_step_minor * 1] = (2 * p[pole_step * 0] + 1 * p[pole_step * 1]) / 3;
            p[pole_step_minor * 2] = (1 * p[pole_step * 0] + 2 * p[pole_step * 1]) / 3;
            break;
        case 2:
            /* bias may be be 0 or 1. */
            /* Duplicate the beginning or the ending pole (the old code compatible). */
            fn_make_cubic_poles(p + pole_step * bias,
                    p[pole_step * 0], p[pole_step * bias],
                    p[pole_step * (1 + bias)], p[pole_step * 2],
                    pole_step_minor);
            break;
        case 3:
            /* bias must be 1. */
            fn_make_cubic_poles(p + pole_step * bias,
                    p[pole_step * 0], p[pole_step * 1], p[pole_step * 2], p[pole_step * 3],
                    pole_step_minor);
            break;
        default: /* Must not happen. */
           DO_NOTHING;
    }
}

/* Evaluate a Sampled function.
   A cubic interpolation with a pole cache.
   Allows a fast check for extreme suspection. */
/* This implementation is a particular case of 1 dimension.
   maybe we'll use as an optimisation of the generic case,
   so keep it for a while. */
static int
fn_Sd_evaluate_cubic_cached_1d(const gs_function_Sd_t *pfn, const float *in, float *out)
{
    float d0 = pfn->params.Domain[2 * 0];
    float d1 = pfn->params.Domain[2 * 0 + 1];
    const int pole_step_minor = pfn->params.n;
    const int pole_step = 3 * pole_step_minor;
    int i0; /* A cell index. */
    int ib, ie, i, k;
    double *p, t0, t1, tt;

    tt = (in[0] - d0) * (pfn->params.Size[0] - 1) / (d1 - d0);
    i0 = (int)floor(tt);
    ib = max(i0 - 1, 0);
    ie = min(pfn->params.Size[0], i0 + 3);
    for (i = ib; i < ie; i++) {
        if (pfn->params.pole[i * pole_step] == double_stub) {
            uint sdata[max_Sd_n];
            int bps = pfn->params.BitsPerSample;

            p = &pfn->params.pole[i * pole_step];
            fn_get_samples[pfn->params.BitsPerSample](pfn, i * bps * pfn->params.n, sdata);
            for (k = 0; k < pfn->params.n; k++, p++)
                *p = fn_Sd_encode(pfn, k, (double)sdata[k]);
        }
    }
    p = &pfn->params.pole[i0 * pole_step];
    t0 = tt - i0;
    if (t0 == 0) {
        for (k = 0; k < pfn->params.n; k++, p++)
            out[k] = *p;
    } else {
        if (p[1 * pole_step_minor] == double_stub) {
            for (k = 0; k < pfn->params.n; k++)
                fn_make_poles(&pfn->params.pole[ib * pole_step + k], pole_step,
                        ie - ib - 1, i0 - ib);
        }
        t1 = 1 - t0;
        for (k = 0; k < pfn->params.n; k++, p++) {
            double y = p[0 * pole_step_minor] * t1 * t1 * t1 +
                       p[1 * pole_step_minor] * t1 * t1 * t0 * 3 +
                       p[2 * pole_step_minor] * t1 * t0 * t0 * 3 +
                       p[3 * pole_step_minor] * t0 * t0 * t0;
            if (y < pfn->params.Range[0])
                y = pfn->params.Range[0];
            if (y > pfn->params.Range[1])
                y = pfn->params.Range[1];
            out[k] = y;
        }
    }
    return 0;
}

static inline void
decode_argument(const gs_function_Sd_t *pfn, const float *in, double T[max_Sd_m], int I[max_Sd_m])
{
    int i;

    for (i = 0; i < pfn->params.m; i++) {
        float xi = in[i];
        float d0 = pfn->params.Domain[2 * i + 0];
        float d1 = pfn->params.Domain[2 * i + 1];
        double t;

        if (xi < d0)
            xi = d0;
        if (xi > d1)
            xi = d1;
        t = (xi - d0) * (pfn->params.Size[i] - 1) / (d1 - d0);
        I[i] = (int)floor(t);
        T[i] = t - I[i];
    }
}

static inline void
index_span(const gs_function_Sd_t *pfn, int *I, double *T, int ii, int *Ii, int *ib, int *ie)
{
    *Ii = I[ii];
    if (T[ii] != 0) {
        *ib = max(*Ii - 1, 0);
        *ie = min(pfn->params.Size[ii], *Ii + 3);
    } else {
        *ib = *Ii;
        *ie = *Ii + 1;
    }
}

static inline int
load_vector_to(const gs_function_Sd_t *pfn, int s_offset, double *V)
{
    uint sdata[max_Sd_n];
    int k, code;

    code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
    if (code < 0)
        return code;
    for (k = 0; k < pfn->params.n; k++)
        V[k] = fn_Sd_encode(pfn, k, (double)sdata[k]);
    return 0;
}

static inline int
load_vector(const gs_function_Sd_t *pfn, int a_offset, int s_offset)
{
    if (*(pfn->params.pole + a_offset) == double_stub) {
        uint sdata[max_Sd_n];
        int k, code;

        code = fn_get_samples[pfn->params.BitsPerSample](pfn, s_offset, sdata);
        if (code < 0)
            return code;
        for (k = 0; k < pfn->params.n; k++)
            *(pfn->params.pole + a_offset + k) = fn_Sd_encode(pfn, k, (double)sdata[k]);
    }
    return 0;
}

static inline void
interpolate_vector(const gs_function_Sd_t *pfn, int offset, int pole_step, int power, int bias)
{
    int k;

    for (k = 0; k < pfn->params.n; k++)
        fn_make_poles(pfn->params.pole + offset + k, pole_step, power, bias);
}

static inline void
interpolate_tensors(const gs_function_Sd_t *pfn, int *I, double *T,
        int offset, int pole_step, int power, int bias, int ii)
{
    if (ii < 0)
        interpolate_vector(pfn, offset, pole_step, power, bias);
    else {
        int s = pfn->params.array_step[ii];
        int Ii = I[ii];

        if (T[ii] == 0) {
            interpolate_tensors(pfn, I, T, offset + Ii * s, pole_step, power, bias, ii - 1);
        } else {
            int l;

            for (l = 0; l < 4; l++)
                interpolate_tensors(pfn, I, T, offset + Ii * s + l * s / 3, pole_step, power, bias, ii - 1);
        }
    }
}

static inline bool
is_tensor_done(const gs_function_Sd_t *pfn, int *I, double *T, int a_offset, int ii)
{
    /* Check an inner pole of the cell. */
    int i, o = 0;

    for (i = ii; i >= 0; i--) {
        o += I[i] * pfn->params.array_step[i];
        if (T[i] != 0)
            o += pfn->params.array_step[i] / 3;
    }
    if (*(pfn->params.pole + a_offset + o) != double_stub)
        return true;
    return false;
}

/* Creates a tensor of Bezier coefficients by node interpolation. */
static inline int
make_interpolation_tensor(const gs_function_Sd_t *pfn, int *I, double *T,
                            int a_offset, int s_offset, int ii)
{
    /* Well, this function isn't obvious. Trying to explain what it does.

       Suppose we have a 4x4x4...x4 hypercube of nodes, and we want to build
       a multicubic interpolation function for the inner 2x2x2...x2 hypercube.
       We represent the multicubic function with a tensor of Besier poles,
       and the size of the tensor is 4x4x....x4. Note that the corners
       of the tensor are equal to the corners of the 2x2x...x2 hypercube.

       We organize the 'pole' array so that a tensor of a cell
       occupies the cell, and tensors for neighbour cells have a common hyperplane.

       For a 1-dimentional case let the nodes are n0, n1, n2, n3.
       It defines 3 cells n0...n1, n1...n2, n2...n3.
       For the 2nd cell n1...n2 let the tensor coefficients are q10, q11, q12, q13.
       We choose a cubic approximation, in which tangents at nodes n1, n2
       are parallel to (n2 - n0) and (n3 - n1) correspondingly.
       (Well, this doesn't give a the minimal curvity, but likely it is
       what Adobe implementations do, see the bug 687352,
       and we agree that it's some reasonable).

       Then we have :

       q11 = n0
       q12 = (n0/2 + 3*n1 - n2/2)/3;
       q11 = (n1/2 + 3*n2 - n3/2)/3;
       q13 = n2

       When the source node array have an insufficient nomber of nodes
       along a dimension to determine tangents a cell
       (this happens near the array boundaries),
       we simply duplicate ending nodes. This solution is done
       for the compatibility to the old code, and definitely
       there exists a better one. Likely Adobe does the same.

       For a 2-dimensional case we apply the 1-dimentional case through
       the first dimension, and then construct a surface by varying the
       second coordinate as a parameter. It gives a bicubic surface,
       and the result doesn't depend on the order of coordinates
       (I proved the latter with Matematica 3.0).
       Then we know that an interpolation by one coordinate and
       a differentiation by another coordinate are interchangeble operators.
       Due to that poles of the interpolated function are same as
       interpolated poles of the function (well, we didn't spend time
       for a strong proof, but this fact was confirmed with testing the
       implementation with POLE_CACHE_DEBUG).

       Then we apply the 2-dimentional considerations recursively
       to all dimensions. This is exactly what the function does.

     */
    int code;

    if (ii < 0) {
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
            code = load_vector(pfn, a_offset, s_offset);
            if (code < 0)
                return code;
        }
    } else {
        int Ii, ib, ie, i;
        int sa = pfn->params.array_step[ii];
        int ss = pfn->params.stream_step[ii];

        index_span(pfn, I, T, ii, &Ii, &ib, &ie);
        if (POLE_CACHE_IGNORE || !is_tensor_done(pfn, I, T, a_offset, ii)) {
            for (i = ib; i < ie; i++) {
                code = make_interpolation_tensor(pfn, I, T,
                                a_offset + i * sa, s_offset + i * ss, ii - 1);
                if (code < 0)
                    return code;
            }
            if (T[ii] != 0)
                interpolate_tensors(pfn, I, T, a_offset + ib * sa, sa, ie - ib - 1,
                                Ii - ib, ii - 1);
        }
    }
    return 0;
}

/* Creates a subarray of samples. */
static inline int
make_interpolation_nodes(const gs_function_Sd_t *pfn, double *T0, double *T1,
                            int *I, double *T,
                            int a_offset, int s_offset, int ii)
{
    int code;

    if (ii < 0) {
        if (POLE_CACHE_IGNORE || *(pfn->params.pole + a_offset) == double_stub) {
            code = load_vector(pfn, a_offset, s_offset);
            if (code < 0)
                return code;
        }
        if (pfn->params.Order == 3) {
            code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
            if (code < 0)
                return code;
        }
    } else {
        int i;
        int i0 = (int)floor(T0[ii]);
        int i1 = (int)ceil(T1[ii]);
        int sa = pfn->params.array_step[ii];
        int ss = pfn->params.stream_step[ii];

        if (i0 < 0 || i0 >= pfn->params.Size[ii])
            return_error(gs_error_unregistered); /* Must not happen. */
        if (i1 < 0 || i1 >= pfn->params.Size[ii])
            return_error(gs_error_unregistered); /* Must not happen. */
        I[ii] = i0;
        T[ii] = (i1 > i0 ? 1 : 0);
        for (i = i0; i <= i1; i++) {
            code = make_interpolation_nodes(pfn, T0, T1, I, T,
                            a_offset + i * sa, s_offset + i * ss, ii - 1);
            if (code < 0)
                return code;
        }
    }
    return 0;
}

static inline int
evaluate_from_tenzor(const gs_function_Sd_t *pfn, int *I, double *T, int offset, int ii, double *y)
{
    int s = pfn->params.array_step[ii], k, l, code;

    if (ii < 0) {
        for (k = 0; k < pfn->params.n; k++)
            y[k] = *(pfn->params.pole + offset + k);
    } else if (T[ii] == 0) {
        return evaluate_from_tenzor(pfn, I, T, offset + s * I[ii], ii - 1, y);
    } else {
        double t0 = T[ii], t1 = 1 - t0;
        double p[4][max_Sd_n];

        for (l = 0; l < 4; l++) {
            code = evaluate_from_tenzor(pfn, I, T, offset + s * I[ii] + l * (s / 3), ii - 1, p[l]);
            if (code < 0)
                return code;
        }
        for (k = 0; k < pfn->params.n; k++)
            y[k] = p[0][k] * t1 * t1 * t1 +
                   p[1][k] * t1 * t1 * t0 * 3 +
                   p[2][k] * t1 * t0 * t0 * 3 +
           p[3][k] * t0 * t0 * t0;
    }
    return 0;
}

/* Evaluate a Sampled function. */
/* A cubic interpolation with pole cache. */
/* Allows a fast check for extreme suspection with is_tensor_monotonic. */
static int
fn_Sd_evaluate_multicubic_cached(const gs_function_Sd_t *pfn, const float *in, float *out)
{
    double T[max_Sd_m], y[max_Sd_n];
    int I[max_Sd_m], k, code;

    decode_argument(pfn, in, T, I);
    code = make_interpolation_tensor(pfn, I, T, 0, 0, pfn->params.m - 1);
    if (code < 0)
        return code;
    evaluate_from_tenzor(pfn, I, T, 0, pfn->params.m - 1, y);
    for (k = 0; k < pfn->params.n; k++) {
        double yk = y[k];

        if (yk < pfn->params.Range[k * 2 + 0])
            yk = pfn->params.Range[k * 2 + 0];
        if (yk > pfn->params.Range[k * 2 + 1])
            yk = pfn->params.Range[k * 2 + 1];
        out[k] = yk;
    }
    return 0;
}

/* Evaluate a Sampled function. */
static int
fn_Sd_evaluate(const gs_function_t * pfn_common, const float *in, float *out)
{
    const gs_function_Sd_t *pfn = (const gs_function_Sd_t *)pfn_common;
    int code;

    if (pfn->params.Order == 3) {
        if (POLE_CACHE_GENERIC_1D || pfn->params.m > 1)
            code = fn_Sd_evaluate_multicubic_cached(pfn, in, out);
        else
            code = fn_Sd_evaluate_cubic_cached_1d(pfn, in, out);
#	if POLE_CACHE_DEBUG
        {   float y[max_Sd_n];
            int k, code1;

            code1 = fn_Sd_evaluate_general(pfn_common, in, y);
            if (code != code1)
                return_error(gs_error_unregistered); /* Must not happen. */
            for (k = 0; k < pfn->params.n; k++) {
                if (any_abs(y[k] - out[k]) > 1e-6 * (pfn->params.Range[k * 2 + 1] - pfn->params.Range[k * 2 + 0]))
                    return_error(gs_error_unregistered); /* Must not happen. */
            }
        }
#	endif
    } else
        code = fn_Sd_evaluate_general(pfn_common, in, out);
    return code;
}

/* Map a function subdomain to the sample index subdomain. */
static inline int
get_scaled_range(const gs_function_Sd_t *const pfn,
                   const float *lower, const float *upper,
                   int i, float *pw0, float *pw1)
{
    float d0 = pfn->params.Domain[i * 2 + 0], d1 = pfn->params.Domain[i * 2 + 1];
    float v0 = lower[i], v1 = upper[i];
    float e0, e1, w0, w1, w;
    const float small_noise = (float)1e-6;

    if (v0 < d0 || v0 > d1)
        return_error(gs_error_rangecheck);
    if (pfn->params.Encode)
        e0 = pfn->params.Encode[i * 2 + 0], e1 = pfn->params.Encode[i * 2 + 1];
    else
        e0 = 0, e1 = (float)pfn->params.Size[i] - 1;
    w0 = (v0 - d0) * (e1 - e0) / (d1 - d0) + e0;
    if (w0 < 0)
        w0 = 0;
    else if (w0 >= pfn->params.Size[i] - 1)
        w0 = (float)pfn->params.Size[i] - 1;
    w1 = (v1 - d0) * (e1 - e0) / (d1 - d0) + e0;
    if (w1 < 0)
        w1 = 0;
    else if (w1 >= pfn->params.Size[i] - 1)
        w1 = (float)pfn->params.Size[i] - 1;
    if (w0 > w1) {
        w = w0; w0 = w1; w1 = w;
    }
    if (floor(w0 + 1) - w0 < small_noise * any_abs(e1 - e0))
        w0 = (floor(w0) + 1);
    if (w1 - floor(w1) < small_noise * any_abs(e1 - e0))
        w1 = floor(w1);
    if (w0 > w1)
        w0 = w1;
    *pw0 = w0;
    *pw1 = w1;
    return 0;
}

/* Copy a tensor to a differently indexed pole array. */
static int
copy_poles(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int a_offset,
                int ii, double *pole, int p_offset, int pole_step)
{
    int i, ei, sa, code;
    int order = pfn->params.Order;

    if (pole_step <= 0)
        return_error(gs_error_limitcheck); /* Too small buffer. */
    ei = (T0[ii] == T1[ii] ? 1 : order + 1);
    sa = pfn->params.array_step[ii];
    if (ii == 0) {
        for (i = 0; i < ei; i++)
            *(pole + p_offset + i * pole_step) =
                    *(pfn->params.pole + a_offset + I[ii] * sa + i * (sa / order));
    } else {
        for (i = 0; i < ei; i++) {
            code = copy_poles(pfn, I, T0, T1, a_offset + I[ii] * sa + i * (sa / order), ii - 1,
                            pole, p_offset + i * pole_step, pole_step / 4);
            if (code < 0)
                return code;
        }
    }
    return 0;
}

static inline void
subcurve(double *pole, int pole_step, double t0, double t1)
{
    /* Generated with subcurve.nb using Mathematica 3.0. */
    double q0 = pole[pole_step * 0];
    double q1 = pole[pole_step * 1];
    double q2 = pole[pole_step * 2];
    double q3 = pole[pole_step * 3];
    double t01 = t0 - 1, t11 = t1 - 1;
    double small = 1e-13;

#define Power2(a) (a) * (a)
#define Power3(a) (a) * (a) * (a)
    pole[pole_step * 0] = t0*(t0*(q3*t0 - 3*q2*t01) + 3*q1*Power2(t01)) - q0*Power3(t01);
    pole[pole_step * 1] = q1*t01*(-2*t0 - t1 + 3*t0*t1) + t0*(q2*t0 + 2*q2*t1 -
                            3*q2*t0*t1 + q3*t0*t1) - q0*t11*Power2(t01);
    pole[pole_step * 2] = t1*(2*q2*t0 + q2*t1 - 3*q2*t0*t1 + q3*t0*t1) +
                            q1*(-t0 - 2*t1 + 3*t0*t1)*t11 - q0*t01*Power2(t11);
    pole[pole_step * 3] = t1*(t1*(3*q2 - 3*q2*t1 + q3*t1) +
                            3*q1*Power2(t11)) - q0*Power3(t11);
#undef Power2
#undef Power3
    if (any_abs(pole[pole_step * 1] - pole[pole_step * 0]) < small)
        pole[pole_step * 1] = pole[pole_step * 0];
    if (any_abs(pole[pole_step * 2] - pole[pole_step * 3]) < small)
        pole[pole_step * 2] = pole[pole_step * 3];
}

static inline void
subline(double *pole, int pole_step, double t0, double t1)
{
    double q0 = pole[pole_step * 0];
    double q1 = pole[pole_step * 1];

    pole[pole_step * 0] = (1 - t0) * q0 + t0 * q1;
    pole[pole_step * 1] = (1 - t1) * q0 + t1 * q1;
}

static void
clamp_poles(double *T0, double *T1, int ii, int i, double * pole,
                int p_offset, int pole_step, int pole_step_i, int order)
{
    if (ii < 0) {
        if (order == 3)
            subcurve(pole + p_offset, pole_step_i, T0[i], T1[i]);
        else
            subline(pole + p_offset, pole_step_i, T0[i], T1[i]);
    } else if (i == ii) {
        clamp_poles(T0, T1, ii - 1, i, pole, p_offset, pole_step / 4, pole_step, order);
    } else {
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1);

        for (j = 0; j < ei; j++)
            clamp_poles(T0, T1, ii - 1, i, pole, p_offset + j * pole_step,
                            pole_step / 4, pole_step_i, order);
    }
}

static inline int /* 3 - don't know, 2 - decreesing, 0 - constant, 1 - increasing. */
curve_monotonity(double *pole, int pole_step)
{
    double p0 = pole[pole_step * 0];
    double p1 = pole[pole_step * 1];
    double p2 = pole[pole_step * 2];
    double p3 = pole[pole_step * 3];

    if (p0 == p1 && any_abs(p1 - p2) < 1e-13 && p2 == p3)
        return 0;
    if (p0 <= p1 && p1 <= p2 && p2 <= p3)
        return 1;
    if (p0 >= p1 && p1 >= p2 && p2 >= p3)
        return 2;
    /* Maybe not monotonic.
       Don't want to solve quadratic equations, so return "don't know".
       This case should be rare.
     */
    return 3;
}

static inline int /* 2 - decreesing, 0 - constant, 1 - increasing. */
line_monotonity(double *pole, int pole_step)
{
    double p0 = pole[pole_step * 0];
    double p1 = pole[pole_step * 1];

    if (p1 - p0 > 1e-13)
        return 1;
    if (p0 - p1 > 1e-13)
        return 2;
    return 0;
}

static int /* 3 bits per guide : 3 - non-monotonic or don't know,
                    2 - decreesing, 0 - constant, 1 - increasing.
                    The number of guides is order+1. */
tensor_dimension_monotonity(const double *T0, const double *T1, int ii, int i0, double *pole,
                int p_offset, int pole_step, int pole_step_i, int order)
{
    if (ii < 0) {
        if (order == 3)
            return curve_monotonity(pole + p_offset, pole_step_i);
        else
            return line_monotonity(pole + p_offset, pole_step_i);
    } else if (i0 == ii) {
        /* Delay the dimension till the end, and adjust pole_step. */
        return tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset,
                            pole_step / 4, pole_step, order);
    } else {
        int j, ei = (T0[ii] == T1[ii] ? 1 : order + 1), m = 0, mm;

        for (j = 0; j < ei; j++) {
            mm = tensor_dimension_monotonity(T0, T1, ii - 1, i0, pole, p_offset + j * pole_step,
                            pole_step/ 4, pole_step_i, order);
            m |= mm << (j * 3);
            if (mm == 3) {
                /* If one guide is not monotonic, the dimension is not monotonic.
                   Can return early. */
                break;
            }
        }
        return m;
    }
}

static inline int
is_tensor_monotonic_by_dimension(const gs_function_Sd_t *pfn, int *I, double *T0, double *T1, int i0, int k,
                    uint *mask /* 3 bits per guide : 3 - non-monotonic or don't know,
                    2 - decreesing, 0 - constant, 1 - increasing.
                    The number of guides is order+1. */)
{
    double pole[4*4*4]; /* For a while restricting with 3-in cubic functions.
                 More arguments need a bigger buffer, but the rest of code is same. */
    int i, code, ii = pfn->params.m - 1;
    double TT0[3], TT1[3];

    *mask = 0;
    if (ii >= 3) {
         /* Unimplemented. We don't know practical cases,
            because currently it is only called while decomposing a shading.  */
        return_error(gs_error_limitcheck);
    }
    code = copy_poles(pfn, I, T0, T1, k, ii, pole, 0, count_of(pole) / 4);
    if (code < 0)
        return code;
    for (i = ii; i >= 0; i--) {
        TT0[i] = 0;
        if (T0[i] != T1[i]) {
            if (T0[i] != 0 || T1[i] != 1)
                clamp_poles(T0, T1, ii, i, pole, 0, count_of(pole) / 4, -1, pfn->params.Order);
            TT1[i] = 1;
        } else
            TT1[i] = 0;
    }
    *mask = tensor_dimension_monotonity(TT0, TT1, ii, i0, pole, 0,
                        count_of(pole) / 4, 1, pfn->params.Order);
    return 0;
}

static int /* error code */
is_lattice_monotonic_by_dimension(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
        int *I, double *S0, double *S1, int ii, int i0, int k,
        uint *mask /* 3 bits per guide : 1 - non-monotonic or don't know, 0 - monotonic;
                      The number of guides is order+1. */)
{
    if (ii == -1) {
        /* fixme : could cache the cell monotonity against redundant evaluation. */
        return is_tensor_monotonic_by_dimension(pfn, I, S0, S1, i0, k, mask);
    } else {
        int i1 = (ii > i0 ? ii : ii == 0 ? i0 : ii - 1); /* Delay the dimension i0 till the end of recursion. */
        int j, code;
        int bi = (int)floor(T0[i1]);
        int ei = (int)floor(T1[i1]);
        uint m, mm, m1 = 0x49249249 & ((1 << ((pfn->params.Order + 1) * 3)) - 1);

        if (floor(T1[i1]) == T1[i1])
            ei --;
        m = 0;
        for (j = bi; j <= ei; j++) {
            /* fixme : A better performance may be obtained with comparing central nodes with side ones. */
            I[i1] = j;
            S0[i1] = max(T0[i1] - j, 0);
            S1[i1] = min(T1[i1] - j, 1);
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, ii - 1, i0, k, &mm);
            if (code < 0)
                return code;
            m |= mm;
            if (m == m1) /* Don't return early - shadings need to know about all dimensions. */
                break;
        }
        if (ii == 0) {
            /* Detect non-monotonic guides. */
            m = m & (m >> 1);
        }
        *mask = m;
        return 0;
    }
}

static inline int /* error code */
is_lattice_monotonic(const gs_function_Sd_t *pfn, const double *T0, const double *T1,
         int *I, double *S0, double *S1,
         int k, uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
                      0 - monotonic. */)
{
    uint m, mm = 0;
    int i, code;

    for (i = 0; i < pfn->params.m; i++) {
        if (T0[i] != T1[i]) {
            code = is_lattice_monotonic_by_dimension(pfn, T0, T1, I, S0, S1, pfn->params.m - 1, i, k, &m);
            if (code < 0)
                return code;
            if (m)
                mm |= 1 << i;
        }
    }
    *mask = mm;
    return 0;
}

static int /* 3 bits per result : 3 - non-monotonic or don't know,
               2 - decreesing, 0 - constant, 1 - increasing,
               <0 - error. */
fn_Sd_1arg_linear_monotonic_rec(const gs_function_Sd_t *const pfn, int i0, int i1,
                                const double *V0, const double *V1)
{
    if (i1 - i0 <= 1) {
        int code = 0, i;

        for (i = 0; i < pfn->params.n; i++) {
            if (V0[i] < V1[i])
                code |= 1 << (i * 3);
            else if (V0[i] > V1[i])
                code |= 2 << (i * 3);
        }
        return code;
    } else {
        double VV[MAX_FAST_COMPS];
        int ii = (i0 + i1) / 2, code, cod1;

        code = load_vector_to(pfn, ii * pfn->params.n * pfn->params.BitsPerSample, VV);
        if (code < 0)
            return code;
        if (code & (code >> 1))
            return code; /* Not monotonic by some component of the result. */
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, ii, V0, VV);
        if (code < 0)
            return code;
        cod1 = fn_Sd_1arg_linear_monotonic_rec(pfn, ii, i1, VV, V1);
        if (cod1 < 0)
            return cod1;
        return code | cod1;
    }
}

static int
fn_Sd_1arg_linear_monotonic(const gs_function_Sd_t *const pfn, double T0, double T1,
                            uint *mask /* 1 - non-monotonic or don't know, 0 - monotonic. */)
{
    int i0 = (int)floor(T0);
    int i1 = (int)ceil(T1), code;
    double V0[MAX_FAST_COMPS], V1[MAX_FAST_COMPS];

    if (i1 - i0 > 1) {
        code = load_vector_to(pfn, i0 * pfn->params.n * pfn->params.BitsPerSample, V0);
        if (code < 0)
            return code;
        code = load_vector_to(pfn, i1 * pfn->params.n * pfn->params.BitsPerSample, V1);
        if (code < 0)
            return code;
        code = fn_Sd_1arg_linear_monotonic_rec(pfn, i0, i1, V0, V1);
        if (code < 0)
            return code;
        if (code & (code >> 1)) {
            *mask = 1;
            return 0;
        }
    }
    *mask = 0;
    return 1;
}

#define DEBUG_Sd_1arg 0

/* Test whether a Sampled function is monotonic. */
static int /* 1 = monotonic, 0 = not or don't know, <0 = error. */
fn_Sd_is_monotonic_aux(const gs_function_Sd_t *const pfn,
                   const float *lower, const float *upper,
                   uint *mask /* 1 bit per dimension : 1 - non-monotonic or don't know,
                      0 - monotonic. */)
{
    int i, code, ii = pfn->params.m - 1;
    int I[4];
    double T0[count_of(I)], T1[count_of(I)];
    double S0[count_of(I)], S1[count_of(I)];
    uint m, mm, m1;
#   if DEBUG_Sd_1arg
    int code1, mask1;
#   endif

    if (ii >= count_of(T0)) {
         /* Unimplemented. We don't know practical cases,
            because currently it is only called while decomposing a shading.  */
        return_error(gs_error_limitcheck);
    }
    for (i = 0; i <= ii; i++) {
        float w0, w1;

        code = get_scaled_range(pfn, lower, upper, i, &w0, &w1);
        if (code < 0)
            return code;
        T0[i] = w0;
        T1[i] = w1;
    }
    if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS) {
        code = fn_Sd_1arg_linear_monotonic(pfn, T0[0], T1[0], mask);
#	if !DEBUG_Sd_1arg
            return code;
#	else
            mask1 = *mask;
            code1 = code;
#	endif
    }
    m1 = (1 << pfn->params.m )- 1;
    code = make_interpolation_nodes(pfn, T0, T1, I, S0, 0, 0, ii);
    if (code < 0)
        return code;
    mm = 0;
    for (i = 0; i < pfn->params.n; i++) {
        code = is_lattice_monotonic(pfn, T0, T1, I, S0, S1, i, &m);
        if (code < 0)
            return code;
        mm |= m;
        if (mm == m1) /* Don't return early - shadings need to know about all dimensions. */
            break;
    }
#   if DEBUG_Sd_1arg
        if (mask1 != mm)
            return_error(gs_error_unregistered);
        if (code1 != !mm)
            return_error(gs_error_unregistered);
#   endif
    *mask = mm;
    return !mm;
}

/* Test whether a Sampled function is monotonic. */
/* 1 = monotonic, 0 = don't know, <0 = error. */
static int
fn_Sd_is_monotonic(const gs_function_t * pfn_common,
                   const float *lower, const float *upper, uint *mask)
{
    const gs_function_Sd_t *const pfn =
        (const gs_function_Sd_t *)pfn_common;

    return fn_Sd_is_monotonic_aux(pfn, lower, upper, mask);
}

/* Return Sampled function information. */
static void
fn_Sd_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi)
{
    const gs_function_Sd_t *const pfn =
        (const gs_function_Sd_t *)pfn_common;
    long size;
    int i;

    gs_function_get_info_default(pfn_common, pfi);
    pfi->DataSource = &pfn->params.DataSource;
    for (i = 0, size = 1; i < pfn->params.m; ++i)
        size *= pfn->params.Size[i];
    pfi->data_size =
        (size * pfn->params.n * pfn->params.BitsPerSample + 7) >> 3;
}

/* Write Sampled function parameters on a parameter list. */
static int
fn_Sd_get_params(const gs_function_t *pfn_common, gs_param_list *plist)
{
    const gs_function_Sd_t *const pfn =
        (const gs_function_Sd_t *)pfn_common;
    int ecode = fn_common_get_params(pfn_common, plist);
    int code;

    if (pfn->params.Order != 1) {
        if ((code = param_write_int(plist, "Order", &pfn->params.Order)) < 0)
            ecode = code;
    }
    if ((code = param_write_int(plist, "BitsPerSample",
                                &pfn->params.BitsPerSample)) < 0)
        ecode = code;
    if (pfn->params.Encode) {
        if ((code = param_write_float_values(plist, "Encode",
                                             pfn->params.Encode,
                                             2 * pfn->params.m, false)) < 0)
            ecode = code;
    }
    if (pfn->params.Decode) {
        if ((code = param_write_float_values(plist, "Decode",
                                             pfn->params.Decode,
                                             2 * pfn->params.n, false)) < 0)
            ecode = code;
    }
    if (pfn->params.Size) {
        if ((code = param_write_int_values(plist, "Size", pfn->params.Size,
                                           pfn->params.m, false)) < 0)
            ecode = code;
    }
    return ecode;
}

/* Make a scaled copy of a Sampled function. */
static int
fn_Sd_make_scaled(const gs_function_Sd_t *pfn, gs_function_Sd_t **ppsfn,
                  const gs_range_t *pranges, gs_memory_t *mem)
{
    gs_function_Sd_t *psfn =
        gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
                        "fn_Sd_make_scaled");
    int code;

    if (psfn == 0)
        return_error(gs_error_VMerror);
    psfn->params = pfn->params;
    psfn->params.Encode = 0;		/* in case of failure */
    psfn->params.Decode = 0;
    psfn->params.Size =
        fn_copy_values(pfn->params.Size, pfn->params.m, sizeof(int), mem);
    if ((code = (psfn->params.Size == 0 ?
                 gs_note_error(gs_error_VMerror) : 0)) < 0 ||
        (code = fn_common_scale((gs_function_t *)psfn,
                                (const gs_function_t *)pfn,
                                pranges, mem)) < 0 ||
        (code = fn_scale_pairs(&psfn->params.Encode, pfn->params.Encode,
                               pfn->params.m, NULL, mem)) < 0 ||
        (code = fn_scale_pairs(&psfn->params.Decode, pfn->params.Decode,
                               pfn->params.n, pranges, mem)) < 0) {
        gs_function_free((gs_function_t *)psfn, true, mem);
    } else
        *ppsfn = psfn;
    return code;
}

/* Free the parameters of a Sampled function. */
void
gs_function_Sd_free_params(gs_function_Sd_params_t * params, gs_memory_t * mem)
{
    gs_free_const_object(mem, params->Size, "Size");
    params->Size = NULL;
    gs_free_const_object(mem, params->Decode, "Decode");
    params->Decode = NULL;
    gs_free_const_object(mem, params->Encode, "Encode");
    params->Encode = NULL;
    fn_common_free_params((gs_function_params_t *) params, mem);
    gs_free_object(mem, params->pole, "gs_function_Sd_free_params");
    params->pole = NULL;
    gs_free_object(mem, params->array_step, "gs_function_Sd_free_params");
    params->array_step = NULL;
    gs_free_object(mem, params->stream_step, "gs_function_Sd_free_params");
    params->stream_step = NULL;
}

/* aA helper for gs_function_Sd_serialize. */
static int serialize_array(const float *a, int half_size, stream *s)
{
    uint n;
    const float dummy[2] = {0, 0};
    int i, code;

    if (a != NULL)
        return sputs(s, (const byte *)a, sizeof(a[0]) * half_size * 2, &n);
    for (i = 0; i < half_size; i++) {
        code = sputs(s, (const byte *)dummy, sizeof(dummy), &n);
        if (code < 0)
            return code;
    }
    return 0;
}

/* Serialize. */
static int
gs_function_Sd_serialize(const gs_function_t * pfn, stream *s)
{
    uint n;
    const gs_function_Sd_params_t * p = (const gs_function_Sd_params_t *)&pfn->params;
    gs_function_info_t info;
    int code = fn_common_serialize(pfn, s);
    ulong pos;
    uint count;
    byte buf[100];
    const byte *ptr;

    if (code < 0)
        return code;
    code = sputs(s, (const byte *)&p->Order, sizeof(p->Order), &n);
    if (code < 0)
        return code;
    code = sputs(s, (const byte *)&p->BitsPerSample, sizeof(p->BitsPerSample), &n);
    if (code < 0)
        return code;
    code = serialize_array(p->Encode, p->m, s);
    if (code < 0)
        return code;
    code = serialize_array(p->Decode, p->n, s);
    if (code < 0)
        return code;
    gs_function_get_info(pfn, &info);
    code = sputs(s, (const byte *)&info.data_size, sizeof(info.data_size), &n);
    if (code < 0)
        return code;
    for (pos = 0; pos < info.data_size; pos += count) {
        count = min(sizeof(buf), info.data_size - pos);
        data_source_access_only(info.DataSource, pos, count, buf, &ptr);
        code = sputs(s, ptr, count, &n);
        if (code < 0)
            return code;
    }
    return 0;
}

/* Allocate and initialize a Sampled function. */
int
gs_function_Sd_init(gs_function_t ** ppfn,
                  const gs_function_Sd_params_t * params, gs_memory_t * mem)
{
    static const gs_function_head_t function_Sd_head = {
        function_type_Sampled,
        {
            (fn_evaluate_proc_t) fn_Sd_evaluate,
            (fn_is_monotonic_proc_t) fn_Sd_is_monotonic,
            (fn_get_info_proc_t) fn_Sd_get_info,
            (fn_get_params_proc_t) fn_Sd_get_params,
            (fn_make_scaled_proc_t) fn_Sd_make_scaled,
            (fn_free_params_proc_t) gs_function_Sd_free_params,
            fn_common_free,
            (fn_serialize_proc_t) gs_function_Sd_serialize,
        }
    };
    int code;
    int i;

    *ppfn = 0;			/* in case of error */
    code = fn_check_mnDR((const gs_function_params_t *)params,
                         params->m, params->n);
    if (code < 0)
        return code;
    if (params->m > max_Sd_m)
        return_error(gs_error_limitcheck);
    switch (params->Order) {
        case 0:		/* use default */
        case 1:
        case 3:
            break;
        default:
            return_error(gs_error_rangecheck);
    }
    switch (params->BitsPerSample) {
        case 1:
        case 2:
        case 4:
        case 8:
        case 12:
        case 16:
        case 24:
        case 32:
            break;
        default:
            return_error(gs_error_rangecheck);
    }
    for (i = 0; i < params->m; ++i)
        if (params->Size[i] <= 0)
            return_error(gs_error_rangecheck);
    {
        gs_function_Sd_t *pfn =
            gs_alloc_struct(mem, gs_function_Sd_t, &st_function_Sd,
                            "gs_function_Sd_init");
        int bps, sa, ss, i, order;

        if (pfn == 0)
            return_error(gs_error_VMerror);
        pfn->params = *params;
        if (params->Order == 0)
            pfn->params.Order = 1;	/* default */
        pfn->params.pole = NULL;
        pfn->params.array_step = NULL;
        pfn->params.stream_step = NULL;
        pfn->head = function_Sd_head;
        pfn->params.array_size = 0;
        if (pfn->params.m == 1 && pfn->params.Order == 1 && pfn->params.n <= MAX_FAST_COMPS && !DEBUG_Sd_1arg) {
            /* Won't use pole cache. Call fn_Sd_1arg_linear_monotonic instead. */
        } else {
            pfn->params.array_step = (int *)gs_alloc_byte_array(mem,
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
            pfn->params.stream_step = (int *)gs_alloc_byte_array(mem,
                                    max_Sd_m, sizeof(int), "gs_function_Sd_init");
            if (pfn->params.array_step == NULL || pfn->params.stream_step == NULL)
                return_error(gs_error_VMerror);
            bps = pfn->params.BitsPerSample;
            sa = pfn->params.n;
            ss = pfn->params.n * bps;
            order = pfn->params.Order;
            for (i = 0; i < pfn->params.m; i++) {
                pfn->params.array_step[i] = sa * order;
                sa = (pfn->params.Size[i] * order - (order - 1)) * sa;
                pfn->params.stream_step[i] = ss;
                ss = pfn->params.Size[i] * ss;
            }
            pfn->params.pole = (double *)gs_alloc_byte_array(mem,
                                    sa, sizeof(double), "gs_function_Sd_init");
            if (pfn->params.pole == NULL)
                return_error(gs_error_VMerror);
            for (i = 0; i < sa; i++)
                pfn->params.pole[i] = double_stub;
            pfn->params.array_size = sa;
        }
        *ppfn = (gs_function_t *) pfn;
    }
    return 0;
}