/* Copyright (C) 2001-2019 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. Refer to licensing information at http://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato, CA 94945, U.S.A., +1(415)492-9861, for further information. */ /* Memory allocator for Ghostscript interpreter */ #include "gx.h" #include "memory_.h" #include "gsexit.h" #include "ierrors.h" #include "gsstruct.h" #include "iref.h" /* must precede iastate.h */ #include "iastate.h" #include "igc.h" /* for gs_gc_reclaim */ #include "ipacked.h" #include "iutil.h" #include "ivmspace.h" #include "store.h" /* * Define global and local instances. */ public_st_gs_dual_memory(); /* Initialize the allocator */ int ialloc_init(gs_dual_memory_t *dmem, gs_memory_t * rmem, uint clump_size, bool level2) { gs_ref_memory_t *ilmem = ialloc_alloc_state(rmem, clump_size); gs_ref_memory_t *ilmem_stable = ialloc_alloc_state(rmem, clump_size); gs_ref_memory_t *igmem = 0; gs_ref_memory_t *igmem_stable = 0; gs_ref_memory_t *ismem = ialloc_alloc_state(rmem, clump_size); int i; if (ilmem == 0 || ilmem_stable == 0 || ismem == 0) goto fail; ilmem->stable_memory = (gs_memory_t *)ilmem_stable; if (level2) { igmem = ialloc_alloc_state(rmem, clump_size); igmem_stable = ialloc_alloc_state(rmem, clump_size); if (igmem == 0 || igmem_stable == 0) goto fail; igmem->stable_memory = (gs_memory_t *)igmem_stable; } else igmem = ilmem, igmem_stable = ilmem_stable; for (i = 0; i < countof(dmem->spaces_indexed); i++) dmem->spaces_indexed[i] = 0; dmem->space_local = ilmem; dmem->space_global = igmem; dmem->space_system = ismem; dmem->spaces.vm_reclaim = gs_gc_reclaim; /* real GC */ dmem->reclaim = 0; /* no interpreter GC yet */ /* Level 1 systems have only local VM. */ igmem->space = avm_global; igmem_stable->space = avm_global; ilmem->space = avm_local; /* overrides if ilmem == igmem */ ilmem_stable->space = avm_local; /* ditto */ ismem->space = avm_system; # if IGC_PTR_STABILITY_CHECK igmem->space_id = (i_vm_global << 1) + 1; igmem_stable->space_id = i_vm_global << 1; ilmem->space_id = (i_vm_local << 1) + 1; /* overrides if ilmem == igmem */ ilmem_stable->space_id = i_vm_local << 1; /* ditto */ ismem->space_id = (i_vm_system << 1); # endif ialloc_set_space(dmem, avm_global); return 0; fail: ialloc_free_state(igmem_stable); ialloc_free_state(igmem); ialloc_free_state(ismem); ialloc_free_state(ilmem_stable); ialloc_free_state(ilmem); return_error(gs_error_VMerror); } /* Free the allocator */ void ialloc_finit(gs_dual_memory_t *mem) { if (mem != NULL) { gs_ref_memory_t *ilmem = mem->space_local; gs_ref_memory_t *igmem = mem->space_global; gs_ref_memory_t *ismem = mem->space_system; if (ilmem != NULL) { gs_ref_memory_t *ilmem_stable = (gs_ref_memory_t *)(ilmem->stable_memory); gs_memory_free_all((gs_memory_t *)ilmem_stable, FREE_ALL_EVERYTHING, "ialloc_finit"); gs_memory_free_all((gs_memory_t *)ilmem, FREE_ALL_EVERYTHING, "ialloc_finit"); } if (igmem != NULL) { gs_ref_memory_t *igmem_stable = (gs_ref_memory_t *)(igmem->stable_memory); gs_memory_free_all((gs_memory_t *)igmem_stable, FREE_ALL_EVERYTHING, "ialloc_finit"); gs_memory_free_all((gs_memory_t *)igmem, FREE_ALL_EVERYTHING, "ialloc_finit"); } if (ismem != NULL) gs_memory_free_all((gs_memory_t *)ismem, FREE_ALL_EVERYTHING, "ialloc_finit"); } } /* ================ Local/global VM ================ */ /* Get the space attribute of an allocator */ uint imemory_space(const gs_ref_memory_t * iimem) { return iimem->space; } /* Select the allocation space. */ void ialloc_set_space(gs_dual_memory_t * dmem, uint space) { gs_ref_memory_t *mem = dmem->spaces_indexed[space >> r_space_shift]; dmem->current = mem; dmem->current_space = mem->space; } /* Get the l_new attribute of a current allocator. */ /* (A copy of the new_mask in the gs_dual_memory_t.) */ uint imemory_new_mask(const gs_ref_memory_t *imem) { return imem->new_mask; } /* Get the save level of an allocator. */ int imemory_save_level(const gs_ref_memory_t *imem) { return imem->save_level; } /* Reset the requests. */ void ialloc_reset_requested(gs_dual_memory_t * dmem) { dmem->space_system->gc_status.requested = 0; dmem->space_global->gc_status.requested = 0; dmem->space_local->gc_status.requested = 0; } /* ================ Refs ================ */ #ifdef DEBUG static int ialloc_trace_space(const gs_ref_memory_t *imem) { return imem->space + (imem->stable_memory == (const gs_memory_t *)imem); } #endif /* Register a ref root. */ int gs_register_ref_root(gs_memory_t *mem, gs_gc_root_t **root, void **pp, client_name_t cname) { return gs_register_root(mem, root, ptr_ref_type, pp, cname); } /* * As noted in iastate.h, every run of refs has an extra ref at the end * to hold relocation information for the garbage collector; * since sizeof(ref) % obj_align_mod == 0, we never need to * allocate any additional padding space at the end of the block. */ /* Allocate an array of refs. */ int gs_alloc_ref_array(gs_ref_memory_t * mem, ref * parr, uint attrs, uint num_refs, client_name_t cname) { ref *obj; int i; /* If we're allocating a run of refs already, */ /* and we aren't about to overflow the maximum run length, use it. */ if (mem->cc && mem->cc->has_refs == true && mem->cc->rtop == mem->cc->cbot && num_refs < (mem->cc->ctop - mem->cc->cbot) / sizeof(ref) && mem->cc->rtop - (byte *) mem->cc->rcur + num_refs * sizeof(ref) < max_size_st_refs ) { ref *end; obj = (ref *) mem->cc->rtop - 1; /* back up over last ref */ if_debug4m('A', (const gs_memory_t *)mem, "[a%d:+$ ]%s(%u) = 0x%lx\n", ialloc_trace_space(mem), client_name_string(cname), num_refs, (ulong) obj); mem->cc->rcur[-1].o_size += num_refs * sizeof(ref); end = (ref *) (mem->cc->rtop = mem->cc->cbot += num_refs * sizeof(ref)); make_mark(end - 1); } else { /* * Allocate a new run. We have to distinguish 3 cases: * - Same clump: cc unchanged, end == cc->cbot. * - Large clump: cc unchanged, end != cc->cbot. * - New clump: cc changed. */ clump_t *cc = mem->cc; ref *end; alloc_change_t *cp = 0; int code = 0; if ((gs_memory_t *)mem != mem->stable_memory) { code = alloc_save_change_alloc(mem, "gs_alloc_ref_array", &cp); if (code < 0) return code; } obj = gs_alloc_struct_array((gs_memory_t *) mem, num_refs + 1, ref, &st_refs, cname); if (obj == 0) return_error(gs_error_VMerror); /* Set the terminating ref now. */ end = (ref *) obj + num_refs; make_mark(end); /* Set has_refs in the clump. */ if (mem->cc && (mem->cc != cc || mem->cc->cbot == (byte *) (end + 1))) { /* Ordinary clump. */ mem->cc->rcur = (obj_header_t *) obj; mem->cc->rtop = (byte *) (end + 1); mem->cc->has_refs = true; } else { /* Large clump. */ /* This happens only for very large arrays, */ /* so it doesn't need to be cheap. */ clump_locator_t cl; cl.memory = mem; cl.cp = mem->root; /* clump_locate_ptr() should *never* fail here */ if (clump_locate_ptr(obj, &cl)) { cl.cp->has_refs = true; } else { gs_abort((gs_memory_t *) mem); } } if (cp) { mem->changes = cp; cp->where = (ref_packed *)obj; } } for (i = 0; i < num_refs; i++) { make_null(&(obj[i])); } make_array(parr, attrs | mem->space, num_refs, obj); return 0; } /* Resize an array of refs. Currently this is only implemented */ /* for shrinking, not for growing. */ int gs_resize_ref_array(gs_ref_memory_t * mem, ref * parr, uint new_num_refs, client_name_t cname) { uint old_num_refs = r_size(parr); uint diff; ref *obj = parr->value.refs; if (new_num_refs > old_num_refs || !r_has_type(parr, t_array)) return_error(gs_error_Fatal); diff = old_num_refs - new_num_refs; /* Check for LIFO. See gs_free_ref_array for more details. */ if (mem->cc && mem->cc->rtop == mem->cc->cbot && (byte *) (obj + (old_num_refs + 1)) == mem->cc->rtop ) { /* Shorten the refs object. */ ref *end = (ref *) (mem->cc->cbot = mem->cc->rtop -= diff * sizeof(ref)); if_debug4m('A', (const gs_memory_t *)mem, "[a%d:<$ ]%s(%u) 0x%lx\n", ialloc_trace_space(mem), client_name_string(cname), diff, (ulong) obj); mem->cc->rcur[-1].o_size -= diff * sizeof(ref); make_mark(end - 1); } else { /* Punt. */ if_debug4m('A', (const gs_memory_t *)mem, "[a%d:<$#]%s(%u) 0x%lx\n", ialloc_trace_space(mem), client_name_string(cname), diff, (ulong) obj); mem->lost.refs += diff * sizeof(ref); } r_set_size(parr, new_num_refs); return 0; } /* Deallocate an array of refs. Only do this if LIFO, or if */ /* the array occupies an entire clump by itself. */ void gs_free_ref_array(gs_ref_memory_t * mem, ref * parr, client_name_t cname) { uint num_refs = r_size(parr); ref *obj = parr->value.refs; /* * Compute the storage size of the array, and check for LIFO * freeing or a separate clump. Note that the array might be packed; * for the moment, if it's anything but a t_array, punt. * The +1s are for the extra ref for the GC. */ if (!r_has_type(parr, t_array)) DO_NOTHING; /* don't look for special cases */ else if (mem->cc && mem->cc->rtop == mem->cc->cbot && (byte *) (obj + (num_refs + 1)) == mem->cc->rtop ) { if ((obj_header_t *) obj == mem->cc->rcur) { /* Deallocate the entire refs object. */ if ((gs_memory_t *)mem != mem->stable_memory) alloc_save_remove(mem, (ref_packed *)obj, "gs_free_ref_array"); gs_free_object((gs_memory_t *) mem, obj, cname); mem->cc->rcur = 0; mem->cc->rtop = 0; } else { /* Deallocate it at the end of the refs object. */ if_debug4m('A', (const gs_memory_t *)mem, "[a%d:-$ ]%s(%u) 0x%lx\n", ialloc_trace_space(mem), client_name_string(cname), num_refs, (ulong) obj); mem->cc->rcur[-1].o_size -= num_refs * sizeof(ref); mem->cc->rtop = mem->cc->cbot = (byte *) (obj + 1); make_mark(obj); } return; } else if (num_refs >= (mem->large_size / ARCH_SIZEOF_REF - 1)) { /* See if this array has a clump all to itself. */ /* We only make this check when freeing very large objects, */ /* so it doesn't need to be cheap. */ clump_locator_t cl; cl.memory = mem; cl.cp = mem->root; if (clump_locate_ptr(obj, &cl) && obj == (ref *) ((obj_header_t *) (cl.cp->cbase) + 1) && (byte *) (obj + (num_refs + 1)) == cl.cp->cend ) { /* Free the clump. */ if_debug4m('a', (const gs_memory_t *)mem, "[a%d:-$L]%s(%u) 0x%lx\n", ialloc_trace_space(mem), client_name_string(cname), num_refs, (ulong) obj); if ((gs_memory_t *)mem != mem->stable_memory) { alloc_save_remove(mem, (ref_packed *)obj, "gs_free_ref_array"); } alloc_free_clump(cl.cp, mem); return; } } /* Punt, but fill the array with nulls so that there won't be */ /* dangling references to confuse the garbage collector. */ if_debug4m('A', (const gs_memory_t *)mem, "[a%d:-$#]%s(%u) 0x%lx\n", ialloc_trace_space(mem), client_name_string(cname), num_refs, (ulong) obj); { uint size; switch (r_type(parr)) { case t_shortarray: size = num_refs * sizeof(ref_packed); break; case t_mixedarray:{ /* We have to parse the array to compute the storage size. */ uint i = 0; const ref_packed *p = parr->value.packed; for (; i < num_refs; ++i) p = packed_next(p); size = (const byte *)p - (const byte *)parr->value.packed; break; } case t_array: size = num_refs * sizeof(ref); break; default: lprintf3("Unknown type 0x%x in free_ref_array(%u,0x%lx)!", r_type(parr), num_refs, (ulong) obj); return; } /* * If there are any leftover packed elements, we don't * worry about them, since they can't be dangling references. */ refset_null_new(obj, size / sizeof(ref), 0); mem->lost.refs += size; } } /* Allocate a string ref. */ int gs_alloc_string_ref(gs_ref_memory_t * mem, ref * psref, uint attrs, uint nbytes, client_name_t cname) { byte *str = gs_alloc_string((gs_memory_t *) mem, nbytes, cname); if (str == 0) return_error(gs_error_VMerror); make_string(psref, attrs | mem->space, nbytes, str); return 0; }