summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'tesseract/src/training/common/trainingsampleset.cpp')
-rw-r--r--tesseract/src/training/common/trainingsampleset.cpp771
1 files changed, 771 insertions, 0 deletions
diff --git a/tesseract/src/training/common/trainingsampleset.cpp b/tesseract/src/training/common/trainingsampleset.cpp
new file mode 100644
index 00000000..7b4fa941
--- /dev/null
+++ b/tesseract/src/training/common/trainingsampleset.cpp
@@ -0,0 +1,771 @@
+// Copyright 2010 Google Inc. All Rights Reserved.
+// Author: rays@google.com (Ray Smith)
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+///////////////////////////////////////////////////////////////////////
+
+#ifdef HAVE_CONFIG_H
+#include "config_auto.h"
+#endif
+
+#include <algorithm>
+
+#include "trainingsampleset.h"
+#include "allheaders.h"
+#include "boxread.h"
+#include "fontinfo.h"
+#include "indexmapbidi.h"
+#include "intfeaturedist.h"
+#include "intfeaturemap.h"
+#include "intfeaturespace.h"
+#include "shapetable.h"
+#include "trainingsample.h"
+#include "unicity_table.h"
+
+namespace tesseract {
+
+const int kTestChar = -1; // 37;
+// Max number of distances to compute the squared way
+const int kSquareLimit = 25;
+// Prime numbers for subsampling distances.
+const int kPrime1 = 17;
+const int kPrime2 = 13;
+
+TrainingSampleSet::FontClassInfo::FontClassInfo()
+ : num_raw_samples(0), canonical_sample(-1), canonical_dist(0.0f) {
+}
+
+// Writes to the given file. Returns false in case of error.
+bool TrainingSampleSet::FontClassInfo::Serialize(FILE* fp) const {
+ if (fwrite(&num_raw_samples, sizeof(num_raw_samples), 1, fp) != 1)
+ return false;
+ if (fwrite(&canonical_sample, sizeof(canonical_sample), 1, fp) != 1)
+ return false;
+ if (fwrite(&canonical_dist, sizeof(canonical_dist), 1, fp) != 1) return false;
+ if (!samples.Serialize(fp)) return false;
+ return true;
+}
+// Reads from the given file. Returns false in case of error.
+// If swap is true, assumes a big/little-endian swap is needed.
+bool TrainingSampleSet::FontClassInfo::DeSerialize(bool swap, FILE* fp) {
+ if (fread(&num_raw_samples, sizeof(num_raw_samples), 1, fp) != 1)
+ return false;
+ if (fread(&canonical_sample, sizeof(canonical_sample), 1, fp) != 1)
+ return false;
+ if (fread(&canonical_dist, sizeof(canonical_dist), 1, fp) != 1) return false;
+ if (!samples.DeSerialize(swap, fp)) return false;
+ if (swap) {
+ ReverseN(&num_raw_samples, sizeof(num_raw_samples));
+ ReverseN(&canonical_sample, sizeof(canonical_sample));
+ ReverseN(&canonical_dist, sizeof(canonical_dist));
+ }
+ return true;
+}
+
+TrainingSampleSet::TrainingSampleSet(const FontInfoTable& font_table)
+ : num_raw_samples_(0), unicharset_size_(0),
+ font_class_array_(nullptr), fontinfo_table_(font_table) {
+}
+
+TrainingSampleSet::~TrainingSampleSet() {
+ delete font_class_array_;
+}
+
+// Writes to the given file. Returns false in case of error.
+bool TrainingSampleSet::Serialize(FILE* fp) const {
+ if (!samples_.Serialize(fp)) return false;
+ if (!unicharset_.save_to_file(fp)) return false;
+ if (!font_id_map_.Serialize(fp)) return false;
+ int8_t not_null = font_class_array_ != nullptr;
+ if (fwrite(&not_null, sizeof(not_null), 1, fp) != 1) return false;
+ if (not_null) {
+ if (!font_class_array_->SerializeClasses(fp)) return false;
+ }
+ return true;
+}
+
+// Reads from the given file. Returns false in case of error.
+// If swap is true, assumes a big/little-endian swap is needed.
+bool TrainingSampleSet::DeSerialize(bool swap, FILE* fp) {
+ if (!samples_.DeSerialize(swap, fp)) return false;
+ num_raw_samples_ = samples_.size();
+ if (!unicharset_.load_from_file(fp)) return false;
+ if (!font_id_map_.DeSerialize(swap, fp)) return false;
+ delete font_class_array_;
+ font_class_array_ = nullptr;
+ int8_t not_null;
+ if (fread(&not_null, sizeof(not_null), 1, fp) != 1) return false;
+ if (not_null) {
+ FontClassInfo empty;
+ font_class_array_ = new GENERIC_2D_ARRAY<FontClassInfo >(1, 1 , empty);
+ if (!font_class_array_->DeSerializeClasses(swap, fp)) return false;
+ }
+ unicharset_size_ = unicharset_.size();
+ return true;
+}
+
+// Load an initial unicharset, or set one up if the file cannot be read.
+void TrainingSampleSet::LoadUnicharset(const char* filename) {
+ if (!unicharset_.load_from_file(filename)) {
+ tprintf("Failed to load unicharset from file %s\n"
+ "Building unicharset from scratch...\n",
+ filename);
+ unicharset_.clear();
+ // Add special characters as they were removed by the clear.
+ UNICHARSET empty;
+ unicharset_.AppendOtherUnicharset(empty);
+ }
+ unicharset_size_ = unicharset_.size();
+}
+
+// Adds a character sample to this sample set.
+// If the unichar is not already in the local unicharset, it is added.
+// Returns the unichar_id of the added sample, from the local unicharset.
+int TrainingSampleSet::AddSample(const char* unichar, TrainingSample* sample) {
+ if (!unicharset_.contains_unichar(unichar)) {
+ unicharset_.unichar_insert(unichar);
+ if (unicharset_.size() > MAX_NUM_CLASSES) {
+ tprintf("Error: Size of unicharset in TrainingSampleSet::AddSample is "
+ "greater than MAX_NUM_CLASSES\n");
+ return -1;
+ }
+ }
+ UNICHAR_ID char_id = unicharset_.unichar_to_id(unichar);
+ AddSample(char_id, sample);
+ return char_id;
+}
+
+// Adds a character sample to this sample set with the given unichar_id,
+// which must correspond to the local unicharset (in this).
+void TrainingSampleSet::AddSample(int unichar_id, TrainingSample* sample) {
+ sample->set_class_id(unichar_id);
+ samples_.push_back(sample);
+ num_raw_samples_ = samples_.size();
+ unicharset_size_ = unicharset_.size();
+}
+
+// Returns the number of samples for the given font,class pair.
+// If randomize is true, returns the number of samples accessible
+// with randomizing on. (Increases the number of samples if small.)
+// OrganizeByFontAndClass must have been already called.
+int TrainingSampleSet::NumClassSamples(int font_id, int class_id,
+ bool randomize) const {
+ ASSERT_HOST(font_class_array_ != nullptr);
+ if (font_id < 0 || class_id < 0 ||
+ font_id >= font_id_map_.SparseSize() || class_id >= unicharset_size_) {
+ // There are no samples because the font or class doesn't exist.
+ return 0;
+ }
+ int font_index = font_id_map_.SparseToCompact(font_id);
+ if (font_index < 0)
+ return 0; // The font has no samples.
+ if (randomize)
+ return (*font_class_array_)(font_index, class_id).samples.size();
+ else
+ return (*font_class_array_)(font_index, class_id).num_raw_samples;
+}
+
+// Gets a sample by its index.
+const TrainingSample* TrainingSampleSet::GetSample(int index) const {
+ return samples_[index];
+}
+
+// Gets a sample by its font, class, index.
+// OrganizeByFontAndClass must have been already called.
+const TrainingSample* TrainingSampleSet::GetSample(int font_id, int class_id,
+ int index) const {
+ ASSERT_HOST(font_class_array_ != nullptr);
+ int font_index = font_id_map_.SparseToCompact(font_id);
+ if (font_index < 0) return nullptr;
+ int sample_index = (*font_class_array_)(font_index, class_id).samples[index];
+ return samples_[sample_index];
+}
+
+// Get a sample by its font, class, index. Does not randomize.
+// OrganizeByFontAndClass must have been already called.
+TrainingSample* TrainingSampleSet::MutableSample(int font_id, int class_id,
+ int index) {
+ ASSERT_HOST(font_class_array_ != nullptr);
+ int font_index = font_id_map_.SparseToCompact(font_id);
+ if (font_index < 0) return nullptr;
+ int sample_index = (*font_class_array_)(font_index, class_id).samples[index];
+ return samples_[sample_index];
+}
+
+// Returns a string debug representation of the given sample:
+// font, unichar_str, bounding box, page.
+STRING TrainingSampleSet::SampleToString(const TrainingSample& sample) const {
+ STRING boxfile_str;
+ MakeBoxFileStr(unicharset_.id_to_unichar(sample.class_id()),
+ sample.bounding_box(), sample.page_num(), &boxfile_str);
+ return STRING(fontinfo_table_.get(sample.font_id()).name) + " " + boxfile_str;
+}
+
+// Gets the combined set of features used by all the samples of the given
+// font/class combination.
+const BitVector& TrainingSampleSet::GetCloudFeatures(
+ int font_id, int class_id) const {
+ int font_index = font_id_map_.SparseToCompact(font_id);
+ ASSERT_HOST(font_index >= 0);
+ return (*font_class_array_)(font_index, class_id).cloud_features;
+}
+// Gets the indexed features of the canonical sample of the given
+// font/class combination.
+const GenericVector<int>& TrainingSampleSet::GetCanonicalFeatures(
+ int font_id, int class_id) const {
+ int font_index = font_id_map_.SparseToCompact(font_id);
+ ASSERT_HOST(font_index >= 0);
+ return (*font_class_array_)(font_index, class_id).canonical_features;
+}
+
+// Returns the distance between the given UniCharAndFonts pair.
+// If matched_fonts, only matching fonts, are considered, unless that yields
+// the empty set.
+// OrganizeByFontAndClass must have been already called.
+float TrainingSampleSet::UnicharDistance(const UnicharAndFonts& uf1,
+ const UnicharAndFonts& uf2,
+ bool matched_fonts,
+ const IntFeatureMap& feature_map) {
+ int num_fonts1 = uf1.font_ids.size();
+ int c1 = uf1.unichar_id;
+ int num_fonts2 = uf2.font_ids.size();
+ int c2 = uf2.unichar_id;
+ double dist_sum = 0.0;
+ int dist_count = 0;
+ const bool debug = false;
+ if (matched_fonts) {
+ // Compute distances only where fonts match.
+ for (int i = 0; i < num_fonts1; ++i) {
+ int f1 = uf1.font_ids[i];
+ for (int j = 0; j < num_fonts2; ++j) {
+ int f2 = uf2.font_ids[j];
+ if (f1 == f2) {
+ dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
+ ++dist_count;
+ }
+ }
+ }
+ } else if (num_fonts1 * num_fonts2 <= kSquareLimit) {
+ // Small enough sets to compute all the distances.
+ for (int i = 0; i < num_fonts1; ++i) {
+ int f1 = uf1.font_ids[i];
+ for (int j = 0; j < num_fonts2; ++j) {
+ int f2 = uf2.font_ids[j];
+ dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
+ if (debug) {
+ tprintf("Cluster dist %d %d %d %d = %g\n",
+ f1, c1, f2, c2,
+ ClusterDistance(f1, c1, f2, c2, feature_map));
+ }
+ ++dist_count;
+ }
+ }
+ } else {
+ // Subsample distances, using the largest set once, and stepping through
+ // the smaller set so as to ensure that all the pairs are different.
+ int increment = kPrime1 != num_fonts2 ? kPrime1 : kPrime2;
+ int index = 0;
+ int num_samples = std::max(num_fonts1, num_fonts2);
+ for (int i = 0; i < num_samples; ++i, index += increment) {
+ int f1 = uf1.font_ids[i % num_fonts1];
+ int f2 = uf2.font_ids[index % num_fonts2];
+ if (debug) {
+ tprintf("Cluster dist %d %d %d %d = %g\n",
+ f1, c1, f2, c2, ClusterDistance(f1, c1, f2, c2, feature_map));
+ }
+ dist_sum += ClusterDistance(f1, c1, f2, c2, feature_map);
+ ++dist_count;
+ }
+ }
+ if (dist_count == 0) {
+ if (matched_fonts)
+ return UnicharDistance(uf1, uf2, false, feature_map);
+ return 0.0f;
+ }
+ return dist_sum / dist_count;
+}
+
+// Returns the distance between the given pair of font/class pairs.
+// Finds in cache or computes and caches.
+// OrganizeByFontAndClass must have been already called.
+float TrainingSampleSet::ClusterDistance(int font_id1, int class_id1,
+ int font_id2, int class_id2,
+ const IntFeatureMap& feature_map) {
+ ASSERT_HOST(font_class_array_ != nullptr);
+ int font_index1 = font_id_map_.SparseToCompact(font_id1);
+ int font_index2 = font_id_map_.SparseToCompact(font_id2);
+ if (font_index1 < 0 || font_index2 < 0)
+ return 0.0f;
+ FontClassInfo& fc_info = (*font_class_array_)(font_index1, class_id1);
+ if (font_id1 == font_id2) {
+ // Special case cache for speed.
+ if (fc_info.unichar_distance_cache.size() == 0)
+ fc_info.unichar_distance_cache.init_to_size(unicharset_size_, -1.0f);
+ if (fc_info.unichar_distance_cache[class_id2] < 0) {
+ // Distance has to be calculated.
+ float result = ComputeClusterDistance(font_id1, class_id1,
+ font_id2, class_id2,
+ feature_map);
+ fc_info.unichar_distance_cache[class_id2] = result;
+ // Copy to the symmetric cache entry.
+ FontClassInfo& fc_info2 = (*font_class_array_)(font_index2, class_id2);
+ if (fc_info2.unichar_distance_cache.size() == 0)
+ fc_info2.unichar_distance_cache.init_to_size(unicharset_size_, -1.0f);
+ fc_info2.unichar_distance_cache[class_id1] = result;
+ }
+ return fc_info.unichar_distance_cache[class_id2];
+ } else if (class_id1 == class_id2) {
+ // Another special-case cache for equal class-id.
+ if (fc_info.font_distance_cache.size() == 0)
+ fc_info.font_distance_cache.init_to_size(font_id_map_.CompactSize(),
+ -1.0f);
+ if (fc_info.font_distance_cache[font_index2] < 0) {
+ // Distance has to be calculated.
+ float result = ComputeClusterDistance(font_id1, class_id1,
+ font_id2, class_id2,
+ feature_map);
+ fc_info.font_distance_cache[font_index2] = result;
+ // Copy to the symmetric cache entry.
+ FontClassInfo& fc_info2 = (*font_class_array_)(font_index2, class_id2);
+ if (fc_info2.font_distance_cache.size() == 0)
+ fc_info2.font_distance_cache.init_to_size(font_id_map_.CompactSize(),
+ -1.0f);
+ fc_info2.font_distance_cache[font_index1] = result;
+ }
+ return fc_info.font_distance_cache[font_index2];
+ }
+ // Both font and class are different. Linear search for class_id2/font_id2
+ // in what is a hopefully short list of distances.
+ int cache_index = 0;
+ while (cache_index < fc_info.distance_cache.size() &&
+ (fc_info.distance_cache[cache_index].unichar_id != class_id2 ||
+ fc_info.distance_cache[cache_index].font_id != font_id2))
+ ++cache_index;
+ if (cache_index == fc_info.distance_cache.size()) {
+ // Distance has to be calculated.
+ float result = ComputeClusterDistance(font_id1, class_id1,
+ font_id2, class_id2,
+ feature_map);
+ FontClassDistance fc_dist = { class_id2, font_id2, result };
+ fc_info.distance_cache.push_back(fc_dist);
+ // Copy to the symmetric cache entry. We know it isn't there already, as
+ // we always copy to the symmetric entry.
+ FontClassInfo& fc_info2 = (*font_class_array_)(font_index2, class_id2);
+ fc_dist.unichar_id = class_id1;
+ fc_dist.font_id = font_id1;
+ fc_info2.distance_cache.push_back(fc_dist);
+ }
+ return fc_info.distance_cache[cache_index].distance;
+}
+
+// Computes the distance between the given pair of font/class pairs.
+float TrainingSampleSet::ComputeClusterDistance(
+ int font_id1, int class_id1, int font_id2, int class_id2,
+ const IntFeatureMap& feature_map) const {
+ int dist = ReliablySeparable(font_id1, class_id1, font_id2, class_id2,
+ feature_map, false);
+ dist += ReliablySeparable(font_id2, class_id2, font_id1, class_id1,
+ feature_map, false);
+ int denominator = GetCanonicalFeatures(font_id1, class_id1).size();
+ denominator += GetCanonicalFeatures(font_id2, class_id2).size();
+ return static_cast<float>(dist) / denominator;
+}
+
+// Helper to add a feature and its near neighbors to the good_features.
+// levels indicates how many times to compute the offset features of what is
+// already there. This is done by iteration rather than recursion.
+static void AddNearFeatures(const IntFeatureMap& feature_map, int f, int levels,
+ GenericVector<int>* good_features) {
+ int prev_num_features = 0;
+ good_features->push_back(f);
+ int num_features = 1;
+ for (int level = 0; level < levels; ++level) {
+ for (int i = prev_num_features; i < num_features; ++i) {
+ int feature = (*good_features)[i];
+ for (int dir = -kNumOffsetMaps; dir <= kNumOffsetMaps; ++dir) {
+ if (dir == 0) continue;
+ int f1 = feature_map.OffsetFeature(feature, dir);
+ if (f1 >= 0) {
+ good_features->push_back(f1);
+ }
+ }
+ }
+ prev_num_features = num_features;
+ num_features = good_features->size();
+ }
+}
+
+// Returns the number of canonical features of font/class 2 for which
+// neither the feature nor any of its near neighbors occurs in the cloud
+// of font/class 1. Each such feature is a reliable separation between
+// the classes, ASSUMING that the canonical sample is sufficiently
+// representative that every sample has a feature near that particular
+// feature. To check that this is so on the fly would be prohibitively
+// expensive, but it might be possible to pre-qualify the canonical features
+// to include only those for which this assumption is true.
+// ComputeCanonicalFeatures and ComputeCloudFeatures must have been called
+// first, or the results will be nonsense.
+int TrainingSampleSet::ReliablySeparable(int font_id1, int class_id1,
+ int font_id2, int class_id2,
+ const IntFeatureMap& feature_map,
+ bool thorough) const {
+ int result = 0;
+ const TrainingSample* sample2 = GetCanonicalSample(font_id2, class_id2);
+ if (sample2 == nullptr)
+ return 0; // There are no canonical features.
+ const GenericVector<int>& canonical2 = GetCanonicalFeatures(font_id2,
+ class_id2);
+ const BitVector& cloud1 = GetCloudFeatures(font_id1, class_id1);
+ if (cloud1.size() == 0)
+ return canonical2.size(); // There are no cloud features.
+
+ // Find a canonical2 feature that is not in cloud1.
+ for (int f = 0; f < canonical2.size(); ++f) {
+ const int feature = canonical2[f];
+ if (cloud1[feature])
+ continue;
+ // Gather the near neighbours of f.
+ GenericVector<int> good_features;
+ AddNearFeatures(feature_map, feature, 1, &good_features);
+ // Check that none of the good_features are in the cloud.
+ int i;
+ for (i = 0; i < good_features.size(); ++i) {
+ int good_f = good_features[i];
+ if (cloud1[good_f]) {
+ break;
+ }
+ }
+ if (i < good_features.size())
+ continue; // Found one in the cloud.
+ ++result;
+ }
+ return result;
+}
+
+// Returns the total index of the requested sample.
+// OrganizeByFontAndClass must have been already called.
+int TrainingSampleSet::GlobalSampleIndex(int font_id, int class_id,
+ int index) const {
+ ASSERT_HOST(font_class_array_ != nullptr);
+ int font_index = font_id_map_.SparseToCompact(font_id);
+ if (font_index < 0) return -1;
+ return (*font_class_array_)(font_index, class_id).samples[index];
+}
+
+// Gets the canonical sample for the given font, class pair.
+// ComputeCanonicalSamples must have been called first.
+const TrainingSample* TrainingSampleSet::GetCanonicalSample(
+ int font_id, int class_id) const {
+ ASSERT_HOST(font_class_array_ != nullptr);
+ int font_index = font_id_map_.SparseToCompact(font_id);
+ if (font_index < 0) return nullptr;
+ const int sample_index = (*font_class_array_)(font_index,
+ class_id).canonical_sample;
+ return sample_index >= 0 ? samples_[sample_index] : nullptr;
+}
+
+// Gets the max distance for the given canonical sample.
+// ComputeCanonicalSamples must have been called first.
+float TrainingSampleSet::GetCanonicalDist(int font_id, int class_id) const {
+ ASSERT_HOST(font_class_array_ != nullptr);
+ int font_index = font_id_map_.SparseToCompact(font_id);
+ if (font_index < 0) return 0.0f;
+ if ((*font_class_array_)(font_index, class_id).canonical_sample >= 0)
+ return (*font_class_array_)(font_index, class_id).canonical_dist;
+ else
+ return 0.0f;
+}
+
+// Generates indexed features for all samples with the supplied feature_space.
+void TrainingSampleSet::IndexFeatures(const IntFeatureSpace& feature_space) {
+ for (int s = 0; s < samples_.size(); ++s)
+ samples_[s]->IndexFeatures(feature_space);
+}
+
+// Marks the given sample index for deletion.
+// Deletion is actually completed by DeleteDeadSamples.
+void TrainingSampleSet::KillSample(TrainingSample* sample) {
+ sample->set_sample_index(-1);
+}
+
+// Deletes all samples with zero features marked by KillSample.
+void TrainingSampleSet::DeleteDeadSamples() {
+ using namespace std::placeholders; // for _1
+ samples_.compact(std::bind(&TrainingSampleSet::DeleteableSample, this, _1));
+ num_raw_samples_ = samples_.size();
+ // Samples must be re-organized now we have deleted a few.
+}
+
+// Callback function returns true if the given sample is to be deleted, due
+// to having a negative classid.
+bool TrainingSampleSet::DeleteableSample(const TrainingSample* sample) {
+ return sample == nullptr || sample->class_id() < 0;
+}
+
+// Construct an array to access the samples by font,class pair.
+void TrainingSampleSet::OrganizeByFontAndClass() {
+ // Font indexes are sparse, so we used a map to compact them, so we can
+ // have an efficient 2-d array of fonts and character classes.
+ SetupFontIdMap();
+ int compact_font_size = font_id_map_.CompactSize();
+ // Get a 2-d array of generic vectors.
+ delete font_class_array_;
+ FontClassInfo empty;
+ font_class_array_ = new GENERIC_2D_ARRAY<FontClassInfo>(
+ compact_font_size, unicharset_size_, empty);
+ for (int s = 0; s < samples_.size(); ++s) {
+ int font_id = samples_[s]->font_id();
+ int class_id = samples_[s]->class_id();
+ if (font_id < 0 || font_id >= font_id_map_.SparseSize()) {
+ tprintf("Font id = %d/%d, class id = %d/%d on sample %d\n",
+ font_id, font_id_map_.SparseSize(), class_id, unicharset_size_,
+ s);
+ }
+ ASSERT_HOST(font_id >= 0 && font_id < font_id_map_.SparseSize());
+ ASSERT_HOST(class_id >= 0 && class_id < unicharset_size_);
+ int font_index = font_id_map_.SparseToCompact(font_id);
+ (*font_class_array_)(font_index, class_id).samples.push_back(s);
+ }
+ // Set the num_raw_samples member of the FontClassInfo, to set the boundary
+ // between the raw samples and the replicated ones.
+ for (int f = 0; f < compact_font_size; ++f) {
+ for (int c = 0; c < unicharset_size_; ++c)
+ (*font_class_array_)(f, c).num_raw_samples =
+ (*font_class_array_)(f, c).samples.size();
+ }
+ // This is the global number of samples and also marks the boundary between
+ // real and replicated samples.
+ num_raw_samples_ = samples_.size();
+}
+
+// Constructs the font_id_map_ which maps real font_ids (sparse) to a compact
+// index for the font_class_array_.
+void TrainingSampleSet::SetupFontIdMap() {
+ // Number of samples for each font_id.
+ GenericVector<int> font_counts;
+ for (int s = 0; s < samples_.size(); ++s) {
+ const int font_id = samples_[s]->font_id();
+ while (font_id >= font_counts.size())
+ font_counts.push_back(0);
+ ++font_counts[font_id];
+ }
+ font_id_map_.Init(font_counts.size(), false);
+ for (int f = 0; f < font_counts.size(); ++f) {
+ font_id_map_.SetMap(f, font_counts[f] > 0);
+ }
+ font_id_map_.Setup();
+}
+
+
+// Finds the sample for each font, class pair that has least maximum
+// distance to all the other samples of the same font, class.
+// OrganizeByFontAndClass must have been already called.
+void TrainingSampleSet::ComputeCanonicalSamples(const IntFeatureMap& map,
+ bool debug) {
+ ASSERT_HOST(font_class_array_ != nullptr);
+ IntFeatureDist f_table;
+ if (debug) tprintf("feature table size %d\n", map.sparse_size());
+ f_table.Init(&map);
+ int worst_s1 = 0;
+ int worst_s2 = 0;
+ double global_worst_dist = 0.0;
+ // Compute distances independently for each font and char index.
+ int font_size = font_id_map_.CompactSize();
+ for (int font_index = 0; font_index < font_size; ++font_index) {
+ int font_id = font_id_map_.CompactToSparse(font_index);
+ for (int c = 0; c < unicharset_size_; ++c) {
+ int samples_found = 0;
+ FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
+ if (fcinfo.samples.size() == 0 ||
+ (kTestChar >= 0 && c != kTestChar)) {
+ fcinfo.canonical_sample = -1;
+ fcinfo.canonical_dist = 0.0f;
+ if (debug) tprintf("Skipping class %d\n", c);
+ continue;
+ }
+ // The canonical sample will be the one with the min_max_dist, which
+ // is the sample with the lowest maximum distance to all other samples.
+ double min_max_dist = 2.0;
+ // We keep track of the farthest apart pair (max_s1, max_s2) which
+ // are max_max_dist apart, so we can see how bad the variability is.
+ double max_max_dist = 0.0;
+ int max_s1 = 0;
+ int max_s2 = 0;
+ fcinfo.canonical_sample = fcinfo.samples[0];
+ fcinfo.canonical_dist = 0.0f;
+ for (int i = 0; i < fcinfo.samples.size(); ++i) {
+ int s1 = fcinfo.samples[i];
+ const GenericVector<int>& features1 = samples_[s1]->indexed_features();
+ f_table.Set(features1, features1.size(), true);
+ double max_dist = 0.0;
+ // Run the full squared-order search for similar samples. It is still
+ // reasonably fast because f_table.FeatureDistance is fast, but we
+ // may have to reconsider if we start playing with too many samples
+ // of a single char/font.
+ for (int j = 0; j < fcinfo.samples.size(); ++j) {
+ int s2 = fcinfo.samples[j];
+ if (samples_[s2]->class_id() != c ||
+ samples_[s2]->font_id() != font_id ||
+ s2 == s1)
+ continue;
+ GenericVector<int> features2 = samples_[s2]->indexed_features();
+ double dist = f_table.FeatureDistance(features2);
+ if (dist > max_dist) {
+ max_dist = dist;
+ if (dist > max_max_dist) {
+ max_max_dist = dist;
+ max_s1 = s1;
+ max_s2 = s2;
+ }
+ }
+ }
+ // Using Set(..., false) is far faster than re initializing, due to
+ // the sparseness of the feature space.
+ f_table.Set(features1, features1.size(), false);
+ samples_[s1]->set_max_dist(max_dist);
+ ++samples_found;
+ if (max_dist < min_max_dist) {
+ fcinfo.canonical_sample = s1;
+ fcinfo.canonical_dist = max_dist;
+ }
+ UpdateRange(max_dist, &min_max_dist, &max_max_dist);
+ }
+ if (max_max_dist > global_worst_dist) {
+ // Keep a record of the worst pair over all characters/fonts too.
+ global_worst_dist = max_max_dist;
+ worst_s1 = max_s1;
+ worst_s2 = max_s2;
+ }
+ if (debug) {
+ tprintf("Found %d samples of class %d=%s, font %d, "
+ "dist range [%g, %g], worst pair= %s, %s\n",
+ samples_found, c, unicharset_.debug_str(c).c_str(),
+ font_index, min_max_dist, max_max_dist,
+ SampleToString(*samples_[max_s1]).c_str(),
+ SampleToString(*samples_[max_s2]).c_str());
+ }
+ }
+ }
+ if (debug) {
+ tprintf("Global worst dist = %g, between sample %d and %d\n",
+ global_worst_dist, worst_s1, worst_s2);
+ }
+}
+
+// Replicates the samples to a minimum frequency defined by
+// 2 * kSampleRandomSize, or for larger counts duplicates all samples.
+// After replication, the replicated samples are perturbed slightly, but
+// in a predictable and repeatable way.
+// Use after OrganizeByFontAndClass().
+void TrainingSampleSet::ReplicateAndRandomizeSamples() {
+ ASSERT_HOST(font_class_array_ != nullptr);
+ int font_size = font_id_map_.CompactSize();
+ for (int font_index = 0; font_index < font_size; ++font_index) {
+ for (int c = 0; c < unicharset_size_; ++c) {
+ FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
+ int sample_count = fcinfo.samples.size();
+ int min_samples = 2 * std::max(kSampleRandomSize, sample_count);
+ if (sample_count > 0 && sample_count < min_samples) {
+ int base_count = sample_count;
+ for (int base_index = 0; sample_count < min_samples; ++sample_count) {
+ int src_index = fcinfo.samples[base_index++];
+ if (base_index >= base_count) base_index = 0;
+ TrainingSample* sample = samples_[src_index]->RandomizedCopy(
+ sample_count % kSampleRandomSize);
+ int sample_index = samples_.size();
+ sample->set_sample_index(sample_index);
+ samples_.push_back(sample);
+ fcinfo.samples.push_back(sample_index);
+ }
+ }
+ }
+ }
+}
+
+// Caches the indexed features of the canonical samples.
+// ComputeCanonicalSamples must have been already called.
+// TODO(rays) see note on ReliablySeparable and try restricting the
+// canonical features to those that truly represent all samples.
+void TrainingSampleSet::ComputeCanonicalFeatures() {
+ ASSERT_HOST(font_class_array_ != nullptr);
+ const int font_size = font_id_map_.CompactSize();
+ for (int font_index = 0; font_index < font_size; ++font_index) {
+ const int font_id = font_id_map_.CompactToSparse(font_index);
+ for (int c = 0; c < unicharset_size_; ++c) {
+ int num_samples = NumClassSamples(font_id, c, false);
+ if (num_samples == 0)
+ continue;
+ const TrainingSample* sample = GetCanonicalSample(font_id, c);
+ FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
+ fcinfo.canonical_features = sample->indexed_features();
+ }
+ }
+}
+
+// Computes the combined set of features used by all the samples of each
+// font/class combination. Use after ReplicateAndRandomizeSamples.
+void TrainingSampleSet::ComputeCloudFeatures(int feature_space_size) {
+ ASSERT_HOST(font_class_array_ != nullptr);
+ int font_size = font_id_map_.CompactSize();
+ for (int font_index = 0; font_index < font_size; ++font_index) {
+ int font_id = font_id_map_.CompactToSparse(font_index);
+ for (int c = 0; c < unicharset_size_; ++c) {
+ int num_samples = NumClassSamples(font_id, c, false);
+ if (num_samples == 0)
+ continue;
+ FontClassInfo& fcinfo = (*font_class_array_)(font_index, c);
+ fcinfo.cloud_features.Init(feature_space_size);
+ for (int s = 0; s < num_samples; ++s) {
+ const TrainingSample* sample = GetSample(font_id, c, s);
+ const GenericVector<int>& sample_features = sample->indexed_features();
+ for (int i = 0; i < sample_features.size(); ++i)
+ fcinfo.cloud_features.SetBit(sample_features[i]);
+ }
+ }
+ }
+}
+
+// Adds all fonts of the given class to the shape.
+void TrainingSampleSet::AddAllFontsForClass(int class_id, Shape* shape) const {
+ for (int f = 0; f < font_id_map_.CompactSize(); ++f) {
+ const int font_id = font_id_map_.CompactToSparse(f);
+ shape->AddToShape(class_id, font_id);
+ }
+}
+
+#ifndef GRAPHICS_DISABLED
+
+// Display the samples with the given indexed feature that also match
+// the given shape.
+void TrainingSampleSet::DisplaySamplesWithFeature(int f_index,
+ const Shape& shape,
+ const IntFeatureSpace& space,
+ ScrollView::Color color,
+ ScrollView* window) const {
+ for (int s = 0; s < num_raw_samples(); ++s) {
+ const TrainingSample* sample = GetSample(s);
+ if (shape.ContainsUnichar(sample->class_id())) {
+ GenericVector<int> indexed_features;
+ space.IndexAndSortFeatures(sample->features(), sample->num_features(),
+ &indexed_features);
+ for (int f = 0; f < indexed_features.size(); ++f) {
+ if (indexed_features[f] == f_index) {
+ sample->DisplayFeatures(color, window);
+ }
+ }
+ }
+ }
+}
+
+#endif // !GRAPHICS_DISABLED
+
+} // namespace tesseract.