aboutsummaryrefslogtreecommitdiff
blob: b03d3fcaad2face5dd3a12db3adf558933f3f228 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/* Optimized version of the standard bzero() function.
   This file is part of the GNU C Library.
   Copyright (C) 2000-2019 Free Software Foundation, Inc.
   Contributed by Dan Pop for Itanium <Dan.Pop@cern.ch>.
   Rewritten for McKinley by Sverre Jarp, HP Labs/CERN <Sverre.Jarp@cern.ch>

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

/* Return: dest

   Inputs:
        in0:    dest
        in1:    count

   The algorithm is fairly straightforward: set byte by byte until we
   we get to a 16B-aligned address, then loop on 128 B chunks using an
   early store as prefetching, then loop on 32B chucks, then clear remaining
   words, finally clear remaining bytes.
   Since a stf.spill f0 can store 16B in one go, we use this instruction
   to get peak speed.  */

#include <sysdep.h>
#undef ret

#define dest		in0
#define	cnt		in1

#define tmp		r31
#define save_lc		r30
#define ptr0		r29
#define ptr1		r28
#define ptr2		r27
#define ptr3		r26
#define ptr9 		r24
#define	loopcnt		r23
#define linecnt		r22
#define bytecnt		r21

// This routine uses only scratch predicate registers (p6 - p15)
#define p_scr		p6	// default register for same-cycle branches
#define p_unalgn	p9
#define p_y		p11
#define p_n		p12
#define p_yy		p13
#define p_nn		p14

#define movi0		mov

#define MIN1		15
#define MIN1P1HALF	8
#define LINE_SIZE	128
#define LSIZE_SH        7			// shift amount
#define PREF_AHEAD	8

#define USE_FLP
#if defined(USE_INT)
#define store		st8
#define myval		r0
#elif defined(USE_FLP)
#define store		stf8
#define myval		f0
#endif

.align	64
ENTRY(bzero)
{ .mmi
	.prologue
	alloc	tmp = ar.pfs, 2, 0, 0, 0
	lfetch.nt1 [dest]
	.save   ar.lc, save_lc
	movi0	save_lc = ar.lc
} { .mmi
	.body
	mov	ret0 = dest		// return value
	nop.m	0
	cmp.eq	p_scr, p0 = cnt, r0
;; }
{ .mmi
	and	ptr2 = -(MIN1+1), dest	// aligned address
	and	tmp = MIN1, dest	// prepare to check for alignment
	tbit.nz p_y, p_n = dest, 0	// Do we have an odd address? (M_B_U)
} { .mib
	mov	ptr1 = dest
	nop.i	0
(p_scr)	br.ret.dpnt.many rp		// return immediately if count = 0
;; }
{ .mib
	cmp.ne	p_unalgn, p0 = tmp, r0
} { .mib					// NB: # of bytes to move is 1
	sub	bytecnt = (MIN1+1), tmp		//     higher than loopcnt
	cmp.gt	p_scr, p0 = 16, cnt		// is it a minimalistic task?
(p_scr)	br.cond.dptk.many .move_bytes_unaligned	// go move just a few (M_B_U)
;; }
{ .mmi
(p_unalgn) add	ptr1 = (MIN1+1), ptr2		// after alignment
(p_unalgn) add	ptr2 = MIN1P1HALF, ptr2		// after alignment
(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3	// should we do a st8 ?
;; }
{ .mib
(p_y)	add	cnt = -8, cnt
(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2	// should we do a st4 ?
} { .mib
(p_y)	st8	[ptr2] = r0,-4
(p_n)	add	ptr2 = 4, ptr2
;; }
{ .mib
(p_yy)	add	cnt = -4, cnt
(p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1	// should we do a st2 ?
} { .mib
(p_yy)	st4	[ptr2] = r0,-2
(p_nn)	add	ptr2 = 2, ptr2
;; }
{ .mmi
	mov	tmp = LINE_SIZE+1		// for compare
(p_y)	add	cnt = -2, cnt
(p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0	// should we do a st1 ?
} { .mmi
	nop.m	0
(p_y)	st2	[ptr2] = r0,-1
(p_n)	add	ptr2 = 1, ptr2
;; }

{ .mmi
(p_yy)	st1	[ptr2] = r0
	cmp.gt	p_scr, p0 = tmp, cnt		// is it a minimalistic task?
} { .mbb
(p_yy)	add	cnt = -1, cnt
(p_scr)	br.cond.dpnt.many .fraction_of_line	// go move just a few
;; }
{ .mib
	nop.m 	0
	shr.u	linecnt = cnt, LSIZE_SH
	nop.b	0
;; }

	.align 32
.l1b:	// ------------------//  L1B: store ahead into cache lines; fill later
{ .mmi
	and	tmp = -(LINE_SIZE), cnt		// compute end of range
	mov	ptr9 = ptr1			// used for prefetching
	and	cnt = (LINE_SIZE-1), cnt	// remainder
} { .mmi
	mov	loopcnt = PREF_AHEAD-1		// default prefetch loop
	cmp.gt	p_scr, p0 = PREF_AHEAD, linecnt	// check against actual value
;; }
{ .mmi
(p_scr)	add	loopcnt = -1, linecnt
	add	ptr2 = 16, ptr1	// start of stores (beyond prefetch stores)
	add	ptr1 = tmp, ptr1	// first address beyond total range
;; }
{ .mmi
	add	tmp = -1, linecnt	// next loop count
	movi0	ar.lc = loopcnt
;; }
.pref_l1b:
{ .mib
	stf.spill [ptr9] = f0, 128	// Do stores one cache line apart
	nop.i   0
	br.cloop.dptk.few .pref_l1b
;; }
{ .mmi
	add	ptr0 = 16, ptr2		// Two stores in parallel
	movi0	ar.lc = tmp
;; }
.l1bx:
 { .mmi
	stf.spill [ptr2] = f0, 32
	stf.spill [ptr0] = f0, 32
 ;; }
 { .mmi
	stf.spill [ptr2] = f0, 32
	stf.spill [ptr0] = f0, 32
 ;; }
 { .mmi
	stf.spill [ptr2] = f0, 32
	stf.spill [ptr0] = f0, 64
	cmp.lt	p_scr, p0 = ptr9, ptr1	// do we need more prefetching?
 ;; }
{ .mmb
	stf.spill [ptr2] = f0, 32
(p_scr)	stf.spill [ptr9] = f0, 128
	br.cloop.dptk.few .l1bx
;; }
{ .mib
	cmp.gt  p_scr, p0 = 8, cnt	// just a few bytes left ?
(p_scr)	br.cond.dpnt.many  .move_bytes_from_alignment
;; }

.fraction_of_line:
{ .mib
	add	ptr2 = 16, ptr1
	shr.u	loopcnt = cnt, 5   	// loopcnt = cnt / 32
;; }
{ .mib
	cmp.eq	p_scr, p0 = loopcnt, r0
	add	loopcnt = -1, loopcnt
(p_scr)	br.cond.dpnt.many .store_words
;; }
{ .mib
	and	cnt = 0x1f, cnt		// compute the remaining cnt
	movi0   ar.lc = loopcnt
;; }
	.align 32
.l2:	// -----------------------------//  L2A:  store 32B in 2 cycles
{ .mmb
	store	[ptr1] = myval, 8
	store	[ptr2] = myval, 8
;; } { .mmb
	store	[ptr1] = myval, 24
	store	[ptr2] = myval, 24
	br.cloop.dptk.many .l2
;; }
.store_words:
{ .mib
	cmp.gt	p_scr, p0 = 8, cnt	// just a few bytes left ?
(p_scr)	br.cond.dpnt.many .move_bytes_from_alignment	// Branch
;; }

{ .mmi
	store	[ptr1] = myval, 8	// store
	cmp.le	p_y, p_n = 16, cnt	//
	add	cnt = -8, cnt		// subtract
;; }
{ .mmi
(p_y)	store	[ptr1] = myval, 8	// store
(p_y)	cmp.le.unc p_yy, p_nn = 16, cnt
(p_y)	add	cnt = -8, cnt		// subtract
;; }
{ .mmi					// store
(p_yy)	store	[ptr1] = myval, 8
(p_yy)	add	cnt = -8, cnt		// subtract
;; }

.move_bytes_from_alignment:
{ .mib
	cmp.eq	p_scr, p0 = cnt, r0
	tbit.nz.unc p_y, p0 = cnt, 2	// should we terminate with a st4 ?
(p_scr)	br.cond.dpnt.few .restore_and_exit
;; }
{ .mib
(p_y)	st4	[ptr1] = r0,4
	tbit.nz.unc p_yy, p0 = cnt, 1	// should we terminate with a st2 ?
;; }
{ .mib
(p_yy)	st2	[ptr1] = r0,2
	tbit.nz.unc p_y, p0 = cnt, 0	// should we terminate with a st1 ?
;; }

{ .mib
(p_y)	st1	[ptr1] = r0
;; }
.restore_and_exit:
{ .mib
	nop.m	0
	movi0	ar.lc = save_lc
	br.ret.sptk.many rp
;; }

.move_bytes_unaligned:
{ .mmi
       .pred.rel "mutex",p_y, p_n
       .pred.rel "mutex",p_yy, p_nn
(p_n)	cmp.le  p_yy, p_nn = 4, cnt
(p_y)	cmp.le  p_yy, p_nn = 5, cnt
(p_n)	add	ptr2 = 2, ptr1
} { .mmi
(p_y)	add	ptr2 = 3, ptr1
(p_y)	st1	[ptr1] = r0, 1		// fill 1 (odd-aligned) byte
(p_y)	add	cnt = -1, cnt		// [15, 14 (or less) left]
;; }
{ .mmi
(p_yy)	cmp.le.unc p_y, p0 = 8, cnt
	add	ptr3 = ptr1, cnt	// prepare last store
	movi0	ar.lc = save_lc
} { .mmi
(p_yy)	st2	[ptr1] = r0, 4		// fill 2 (aligned) bytes
(p_yy)	st2	[ptr2] = r0, 4		// fill 2 (aligned) bytes
(p_yy)	add	cnt = -4, cnt		// [11, 10 (o less) left]
;; }
{ .mmi
(p_y)	cmp.le.unc p_yy, p0 = 8, cnt
	add	ptr3 = -1, ptr3		// last store
	tbit.nz p_scr, p0 = cnt, 1	// will there be a st2 at the end ?
} { .mmi
(p_y)	st2	[ptr1] = r0, 4		// fill 2 (aligned) bytes
(p_y)	st2	[ptr2] = r0, 4		// fill 2 (aligned) bytes
(p_y)	add	cnt = -4, cnt		// [7, 6 (or less) left]
;; }
{ .mmi
(p_yy)	st2	[ptr1] = r0, 4		// fill 2 (aligned) bytes
(p_yy)	st2	[ptr2] = r0, 4		// fill 2 (aligned) bytes
					// [3, 2 (or less) left]
	tbit.nz p_y, p0 = cnt, 0	// will there be a st1 at the end ?
} { .mmi
(p_yy)	add	cnt = -4, cnt
;; }
{ .mmb
(p_scr)	st2	[ptr1] = r0		// fill 2 (aligned) bytes
(p_y)	st1	[ptr3] = r0		// fill last byte (using ptr3)
	br.ret.sptk.many rp
;; }
END(bzero)