/* CTF linking. Copyright (C) 2019 Free Software Foundation, Inc. This file is part of libctf. libctf is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; see the file COPYING. If not see . */ #include #include /* Type tracking machinery. */ /* Record the correspondence between a source and ctf_add_type()-added destination type: both types are translated into parent type IDs if need be, so they relate to the actual container they are in. Outside controlled circumstances (like linking) it is probably not useful to do more than compare these pointers, since there is nothing stopping the user closing the source container whenever they want to. Our OOM handling here is just to not do anything, because this is called deep enough in the call stack that doing anything useful is painfully difficult: the worst consequence if we do OOM is a bit of type duplication anyway. */ void ctf_add_type_mapping (ctf_file_t *src_fp, ctf_id_t src_type, ctf_file_t *dst_fp, ctf_id_t dst_type) { if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent) src_fp = src_fp->ctf_parent; src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type); if (LCTF_TYPE_ISPARENT (dst_fp, dst_type) && dst_fp->ctf_parent) dst_fp = dst_fp->ctf_parent; dst_type = LCTF_TYPE_TO_INDEX(dst_fp, dst_type); /* This dynhash is a bit tricky: it has a multivalued (structural) key, so we need to use the sized-hash machinery to generate key hashing and equality functions. */ if (dst_fp->ctf_link_type_mapping == NULL) { ctf_hash_fun f = ctf_hash_type_mapping_key; ctf_hash_eq_fun e = ctf_hash_eq_type_mapping_key; if ((dst_fp->ctf_link_type_mapping = ctf_dynhash_create (f, e, free, NULL)) == NULL) return; } ctf_link_type_mapping_key_t *key; key = calloc (1, sizeof (struct ctf_link_type_mapping_key)); if (!key) return; key->cltm_fp = src_fp; key->cltm_idx = src_type; ctf_dynhash_insert (dst_fp->ctf_link_type_mapping, key, (void *) (uintptr_t) dst_type); } /* Look up a type mapping: return 0 if none. The DST_FP is modified to point to the parent if need be. The ID returned is from the dst_fp's perspective. */ ctf_id_t ctf_type_mapping (ctf_file_t *src_fp, ctf_id_t src_type, ctf_file_t **dst_fp) { ctf_link_type_mapping_key_t key; ctf_file_t *target_fp = *dst_fp; ctf_id_t dst_type = 0; if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent) src_fp = src_fp->ctf_parent; src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type); key.cltm_fp = src_fp; key.cltm_idx = src_type; if (target_fp->ctf_link_type_mapping) dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping, &key); if (dst_type != 0) { dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type, target_fp->ctf_parent != NULL); *dst_fp = target_fp; return dst_type; } if (target_fp->ctf_parent) target_fp = target_fp->ctf_parent; else return 0; if (target_fp->ctf_link_type_mapping) dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping, &key); if (dst_type) dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type, target_fp->ctf_parent != NULL); *dst_fp = target_fp; return dst_type; } /* Linker machinery. CTF linking consists of adding CTF archives full of content to be merged into this one to the current file (which must be writable) by calling ctf_link_add_ctf(). Once this is done, a call to ctf_link() will merge the type tables together, generating new CTF files as needed, with this one as a parent, to contain types from the inputs which conflict. ctf_link_add_strtab() takes a callback which provides string/offset pairs to be added to the external symbol table and deduplicated from all CTF string tables in the output link; ctf_link_shuffle_syms() takes a callback which provides symtab entries in ascending order, and shuffles the function and data sections to match; and ctf_link_write() emits a CTF file (if there are no conflicts requiring per-compilation-unit sub-CTF files) or CTF archives (otherwise) and returns it, suitable for addition in the .ctf section of the output. */ /* Add a file to a link. */ static void ctf_arc_close_thunk (void *arc) { ctf_arc_close ((ctf_archive_t *) arc); } static void ctf_file_close_thunk (void *file) { ctf_file_close ((ctf_file_t *) file); } int ctf_link_add_ctf (ctf_file_t *fp, ctf_archive_t *ctf, const char *name) { char *dupname = NULL; if (fp->ctf_link_outputs) return (ctf_set_errno (fp, ECTF_LINKADDEDLATE)); if (fp->ctf_link_inputs == NULL) fp->ctf_link_inputs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, free, ctf_arc_close_thunk); if (fp->ctf_link_inputs == NULL) goto oom; if ((dupname = strdup (name)) == NULL) goto oom; if (ctf_dynhash_insert (fp->ctf_link_inputs, dupname, ctf) < 0) goto oom; return 0; oom: free (fp->ctf_link_inputs); fp->ctf_link_inputs = NULL; free (dupname); return (ctf_set_errno (fp, ENOMEM)); } /* Return a per-CU output CTF dictionary suitable for the given CU, creating and interning it if need be. */ static ctf_file_t * ctf_create_per_cu (ctf_file_t *fp, const char *filename, const char *cuname) { ctf_file_t *cu_fp; const char *ctf_name = NULL; char *dynname = NULL; /* First, check the mapping table and translate the per-CU name we use accordingly. We check both the input filename and the CU name. Only if neither are set do we fall back to the input filename as the per-CU dictionary name. We prefer the filename because this is easier for likely callers to determine. */ if (fp->ctf_link_cu_mapping) { if (((ctf_name = ctf_dynhash_lookup (fp->ctf_link_cu_mapping, filename)) == NULL) && ((ctf_name = ctf_dynhash_lookup (fp->ctf_link_cu_mapping, cuname)) == NULL)) ctf_name = filename; } if (ctf_name == NULL) ctf_name = filename; if ((cu_fp = ctf_dynhash_lookup (fp->ctf_link_outputs, ctf_name)) == NULL) { int err; if ((cu_fp = ctf_create (&err)) == NULL) { ctf_dprintf ("Cannot create per-CU CTF archive for CU %s from " "input file %s: %s\n", cuname, filename, ctf_errmsg (err)); ctf_set_errno (fp, err); return NULL; } if ((dynname = strdup (ctf_name)) == NULL) goto oom; if (ctf_dynhash_insert (fp->ctf_link_outputs, dynname, cu_fp) < 0) goto oom; ctf_import (cu_fp, fp); ctf_cuname_set (cu_fp, cuname); ctf_parent_name_set (cu_fp, _CTF_SECTION); } return cu_fp; oom: free (dynname); ctf_file_close (cu_fp); ctf_set_errno (fp, ENOMEM); return NULL; } /* Add a mapping directing that the CU named FROM should have its conflicting/non-duplicate types (depending on link mode) go into a container named TO. Many FROMs can share a TO: in this case, the effect on conflicting types is not yet defined (but in time an auto-renaming algorithm will be added: ugly, but there is really no right thing one can do in this situation). We forcibly add a container named TO in every case, even though it may well wind up empty, because clients that use this facility usually expect to find every TO container present, even if empty, and malfunction otherwise. */ int ctf_link_add_cu_mapping (ctf_file_t *fp, const char *from, const char *to) { int err; char *f, *t; if (fp->ctf_link_cu_mapping == NULL) fp->ctf_link_cu_mapping = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, free, free); if (fp->ctf_link_cu_mapping == NULL) return ctf_set_errno (fp, ENOMEM); if (fp->ctf_link_outputs == NULL) fp->ctf_link_outputs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, free, ctf_file_close_thunk); if (fp->ctf_link_outputs == NULL) return ctf_set_errno (fp, ENOMEM); f = strdup (from); t = strdup (to); if (!f || !t) goto oom; if (ctf_create_per_cu (fp, t, t) == NULL) goto oom_noerrno; /* Errno is set for us. */ err = ctf_dynhash_insert (fp->ctf_link_cu_mapping, f, t); if (err) { ctf_set_errno (fp, err); goto oom_noerrno; } return 0; oom: ctf_set_errno (fp, errno); oom_noerrno: free (f); free (t); return -1; } /* Set a function which is called to transform the names of archive members. This is useful for applying regular transformations to many names, where ctf_link_add_cu_mapping applies arbitrarily irregular changes to single names. The member name changer is applied at ctf_link_write time, so it cannot conflate multiple CUs into one the way ctf_link_add_cu_mapping can. The changer function accepts a name and should return a new dynamically-allocated name, or NULL if the name should be left unchanged. */ void ctf_link_set_memb_name_changer (ctf_file_t *fp, ctf_link_memb_name_changer_f *changer, void *arg) { fp->ctf_link_memb_name_changer = changer; fp->ctf_link_memb_name_changer_arg = arg; } typedef struct ctf_link_in_member_cb_arg { ctf_file_t *out_fp; const char *file_name; ctf_file_t *in_fp; ctf_file_t *main_input_fp; const char *cu_name; char *arcname; int done_main_member; int share_mode; int in_input_cu_file; } ctf_link_in_member_cb_arg_t; /* Link one type into the link. We rely on ctf_add_type() to detect duplicates. This is not terribly reliable yet (unnmamed types will be mindlessly duplicated), but will improve shortly. */ static int ctf_link_one_type (ctf_id_t type, int isroot _libctf_unused_, void *arg_) { ctf_link_in_member_cb_arg_t *arg = (ctf_link_in_member_cb_arg_t *) arg_; ctf_file_t *per_cu_out_fp; int err; if (arg->share_mode != CTF_LINK_SHARE_UNCONFLICTED) { ctf_dprintf ("Share-duplicated mode not yet implemented.\n"); return ctf_set_errno (arg->out_fp, ECTF_NOTYET); } /* Simply call ctf_add_type: if it reports a conflict and we're adding to the main CTF file, add to the per-CU archive member instead, creating it if necessary. If we got this type from a per-CU archive member, add it straight back to the corresponding member in the output. */ if (!arg->in_input_cu_file) { if (ctf_add_type (arg->out_fp, arg->in_fp, type) != CTF_ERR) return 0; err = ctf_errno (arg->out_fp); if (err != ECTF_CONFLICT) { ctf_dprintf ("Cannot link type %lx from archive member %s, input file %s " "into output link: %s\n", type, arg->arcname, arg->file_name, ctf_errmsg (err)); return -1; } ctf_set_errno (arg->out_fp, 0); } if ((per_cu_out_fp = ctf_create_per_cu (arg->out_fp, arg->file_name, arg->cu_name)) == NULL) return -1; /* Errno is set for us. */ if (ctf_add_type (per_cu_out_fp, arg->in_fp, type) != CTF_ERR) return 0; err = ctf_errno (per_cu_out_fp); if (err == ECTF_CONFLICT) /* Conflicts are possible at this stage only if a non-ld user has combined multiple TUs into a single output dictionary. Even in this case we do not want to stop the link or propagate the error. */ ctf_set_errno (arg->out_fp, 0); return 0; /* As above: do not lose types. */ } /* Check if we can safely add a variable with the given type to this container. */ static int check_variable (const char *name, ctf_file_t *fp, ctf_id_t type, ctf_dvdef_t **out_dvd) { ctf_dvdef_t *dvd; dvd = ctf_dynhash_lookup (fp->ctf_dvhash, name); *out_dvd = dvd; if (!dvd) return 1; if (dvd->dvd_type != type) { /* Variable here. Wrong type: cannot add. Just skip it, because there is no way to express this in CTF. (This might be the parent, in which case we'll try adding in the child first, and only then give up.) */ ctf_dprintf ("Inexpressible duplicate variable %s skipped.\n", name); } return 0; /* Already exists. */ } /* Link one variable in. */ static int ctf_link_one_variable (const char *name, ctf_id_t type, void *arg_) { ctf_link_in_member_cb_arg_t *arg = (ctf_link_in_member_cb_arg_t *) arg_; ctf_file_t *per_cu_out_fp; ctf_id_t dst_type = 0; ctf_file_t *check_fp; ctf_dvdef_t *dvd; /* In unconflicted link mode, if this type is mapped to a type in the parent container, we want to try to add to that first: if it reports a duplicate, or if the type is in a child already, add straight to the child. */ check_fp = arg->out_fp; dst_type = ctf_type_mapping (arg->in_fp, type, &check_fp); if (dst_type != 0) { if (check_fp == arg->out_fp) { if (check_variable (name, check_fp, dst_type, &dvd)) { /* No variable here: we can add it. */ if (ctf_add_variable (check_fp, name, dst_type) < 0) return (ctf_set_errno (arg->out_fp, ctf_errno (check_fp))); return 0; } /* Already present? Nothing to do. */ if (dvd && dvd->dvd_type == type) return 0; } } /* Can't add to the parent due to a name clash, or because it references a type only present in the child. Try adding to the child, creating if need be. */ if ((per_cu_out_fp = ctf_create_per_cu (arg->out_fp, arg->file_name, arg->cu_name)) == NULL) return -1; /* Errno is set for us. */ /* If the type was not found, check for it in the child too. */ if (dst_type == 0) { check_fp = per_cu_out_fp; dst_type = ctf_type_mapping (arg->in_fp, type, &check_fp); if (dst_type == 0) { ctf_dprintf ("Type %lx for variable %s in input file %s not " "found: skipped.\n", type, name, arg->file_name); /* Do not terminate the link: just skip the variable. */ return 0; } } if (check_variable (name, per_cu_out_fp, dst_type, &dvd)) if (ctf_add_variable (per_cu_out_fp, name, dst_type) < 0) return (ctf_set_errno (arg->out_fp, ctf_errno (per_cu_out_fp))); return 0; } /* Merge every type and variable in this archive member into the link, so we can relink things that have already had ld run on them. We use the archive member name, sans any leading '.ctf.', as the CU name for ambiguous types if there is one and it's not the default: otherwise, we use the name of the input file. */ static int ctf_link_one_input_archive_member (ctf_file_t *in_fp, const char *name, void *arg_) { ctf_link_in_member_cb_arg_t *arg = (ctf_link_in_member_cb_arg_t *) arg_; int err = 0; if (strcmp (name, _CTF_SECTION) == 0) { /* This file is the default member of this archive, and has already been explicitly processed. In the default sharing mode of CTF_LINK_SHARE_UNCONFLICTED, it does no harm to rescan an existing shared repo again: all the types will just end up in the same place. But in CTF_LINK_SHARE_DUPLICATED mode, this causes the system to erroneously conclude that all types are duplicated and should be shared, even if they are not. */ if (arg->done_main_member) return 0; arg->arcname = strdup (".ctf."); if (arg->arcname) { char *new_name; new_name = ctf_str_append (arg->arcname, arg->file_name); if (new_name) arg->arcname = new_name; else free (arg->arcname); } } else { arg->arcname = strdup (name); /* Get ambiguous types from our parent. */ ctf_import (in_fp, arg->main_input_fp); arg->in_input_cu_file = 1; } if (!arg->arcname) return ctf_set_errno (in_fp, ENOMEM); arg->cu_name = name; if (strncmp (arg->cu_name, ".ctf.", strlen (".ctf.")) == 0) arg->cu_name += strlen (".ctf."); arg->in_fp = in_fp; if ((err = ctf_type_iter_all (in_fp, ctf_link_one_type, arg)) > -1) err = ctf_variable_iter (in_fp, ctf_link_one_variable, arg); arg->in_input_cu_file = 0; free (arg->arcname); if (err < 0) return -1; /* Errno is set for us. */ return 0; } /* Dump the unnecessary link type mapping after one input file is processed. */ static void empty_link_type_mapping (void *key _libctf_unused_, void *value, void *arg _libctf_unused_) { ctf_file_t *fp = (ctf_file_t *) value; if (fp->ctf_link_type_mapping) ctf_dynhash_empty (fp->ctf_link_type_mapping); } /* Link one input file's types into the output file. */ static void ctf_link_one_input_archive (void *key, void *value, void *arg_) { const char *file_name = (const char *) key; ctf_archive_t *arc = (ctf_archive_t *) value; ctf_link_in_member_cb_arg_t *arg = (ctf_link_in_member_cb_arg_t *) arg_; int err; arg->file_name = file_name; arg->done_main_member = 0; if ((arg->main_input_fp = ctf_arc_open_by_name (arc, NULL, &err)) == NULL) if (err != ECTF_ARNNAME) { ctf_dprintf ("Cannot open main archive member in input file %s in the " "link: skipping: %s.\n", arg->file_name, ctf_errmsg (err)); return; } if (ctf_link_one_input_archive_member (arg->main_input_fp, _CTF_SECTION, arg) < 0) { ctf_file_close (arg->main_input_fp); return; } arg->done_main_member = 1; if (ctf_archive_iter (arc, ctf_link_one_input_archive_member, arg) < 0) ctf_dprintf ("Cannot traverse archive in input file %s: link " "cannot continue: %s.\n", arg->file_name, ctf_errmsg (ctf_errno (arg->out_fp))); else { /* The only error indication to the caller is the errno: so ensure that it is zero if there was no actual error from the caller. */ ctf_set_errno (arg->out_fp, 0); } ctf_file_close (arg->main_input_fp); /* Discard the now-unnecessary mapping table data. */ if (arg->out_fp->ctf_link_type_mapping) ctf_dynhash_empty (arg->out_fp->ctf_link_type_mapping); ctf_dynhash_iter (arg->out_fp->ctf_link_outputs, empty_link_type_mapping, NULL); } /* Merge types and variable sections in all files added to the link together. */ int ctf_link (ctf_file_t *fp, int share_mode) { ctf_link_in_member_cb_arg_t arg; memset (&arg, 0, sizeof (struct ctf_link_in_member_cb_arg)); arg.out_fp = fp; arg.share_mode = share_mode; if (fp->ctf_link_inputs == NULL) return 0; /* Nothing to do. */ if (fp->ctf_link_outputs == NULL) fp->ctf_link_outputs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, free, ctf_file_close_thunk); if (fp->ctf_link_outputs == NULL) return ctf_set_errno (fp, ENOMEM); ctf_dynhash_iter (fp->ctf_link_inputs, ctf_link_one_input_archive, &arg); if (ctf_errno (fp) != 0) return -1; return 0; } typedef struct ctf_link_out_string_cb_arg { const char *str; uint32_t offset; int err; } ctf_link_out_string_cb_arg_t; /* Intern a string in the string table of an output per-CU CTF file. */ static void ctf_link_intern_extern_string (void *key _libctf_unused_, void *value, void *arg_) { ctf_file_t *fp = (ctf_file_t *) value; ctf_link_out_string_cb_arg_t *arg = (ctf_link_out_string_cb_arg_t *) arg_; fp->ctf_flags |= LCTF_DIRTY; if (ctf_str_add_external (fp, arg->str, arg->offset) == NULL) arg->err = ENOMEM; } /* Repeatedly call ADD_STRING to acquire strings from the external string table, adding them to the atoms table for this CU and all subsidiary CUs. If ctf_link() is also called, it must be called first if you want the new CTF files ctf_link() can create to get their strings dedupped against the ELF strtab properly. */ int ctf_link_add_strtab (ctf_file_t *fp, ctf_link_strtab_string_f *add_string, void *arg) { const char *str; uint32_t offset; int err = 0; while ((str = add_string (&offset, arg)) != NULL) { ctf_link_out_string_cb_arg_t iter_arg = { str, offset, 0 }; fp->ctf_flags |= LCTF_DIRTY; if (ctf_str_add_external (fp, str, offset) == NULL) err = ENOMEM; ctf_dynhash_iter (fp->ctf_link_outputs, ctf_link_intern_extern_string, &iter_arg); if (iter_arg.err) err = iter_arg.err; } return -err; } /* Not yet implemented. */ int ctf_link_shuffle_syms (ctf_file_t *fp _libctf_unused_, ctf_link_iter_symbol_f *add_sym _libctf_unused_, void *arg _libctf_unused_) { return 0; } typedef struct ctf_name_list_accum_cb_arg { char **names; ctf_file_t *fp; ctf_file_t **files; size_t i; char **dynames; size_t ndynames; } ctf_name_list_accum_cb_arg_t; /* Accumulate the names and a count of the names in the link output hash, and run ctf_update() on them to generate them. */ static void ctf_accumulate_archive_names (void *key, void *value, void *arg_) { const char *name = (const char *) key; ctf_file_t *fp = (ctf_file_t *) value; char **names; ctf_file_t **files; ctf_name_list_accum_cb_arg_t *arg = (ctf_name_list_accum_cb_arg_t *) arg_; int err; if ((err = ctf_update (fp)) < 0) { ctf_set_errno (arg->fp, ctf_errno (fp)); return; } if ((names = realloc (arg->names, sizeof (char *) * ++(arg->i))) == NULL) { (arg->i)--; ctf_set_errno (arg->fp, ENOMEM); return; } if ((files = realloc (arg->files, sizeof (ctf_file_t *) * arg->i)) == NULL) { (arg->i)--; ctf_set_errno (arg->fp, ENOMEM); return; } /* Allow the caller to get in and modify the name at the last minute. If the caller *does* modify the name, we have to stash away the new name the caller returned so we can free it later on. (The original name is the key of the ctf_link_outputs hash and is freed by the dynhash machinery.) */ if (fp->ctf_link_memb_name_changer) { char **dynames; char *dyname; void *nc_arg = fp->ctf_link_memb_name_changer_arg; dyname = fp->ctf_link_memb_name_changer (fp, name, nc_arg); if (dyname != NULL) { if ((dynames = realloc (arg->dynames, sizeof (char *) * ++(arg->ndynames))) == NULL) { (arg->ndynames)--; ctf_set_errno (arg->fp, ENOMEM); return; } arg->dynames = dynames; name = (const char *) dyname; } } arg->names = names; arg->names[(arg->i) - 1] = (char *) name; arg->files = files; arg->files[(arg->i) - 1] = fp; } /* Change the name of the parent CTF section, if the name transformer has got to it. */ static void ctf_change_parent_name (void *key _libctf_unused_, void *value, void *arg) { ctf_file_t *fp = (ctf_file_t *) value; const char *name = (const char *) arg; ctf_parent_name_set (fp, name); } /* Write out a CTF archive (if there are per-CU CTF files) or a CTF file (otherwise) into a new dynamically-allocated string, and return it. Members with sizes above THRESHOLD are compressed. */ unsigned char * ctf_link_write (ctf_file_t *fp, size_t *size, size_t threshold) { ctf_name_list_accum_cb_arg_t arg; char **names; char *transformed_name = NULL; ctf_file_t **files; FILE *f = NULL; int err; long fsize; const char *errloc; unsigned char *buf = NULL; memset (&arg, 0, sizeof (ctf_name_list_accum_cb_arg_t)); arg.fp = fp; if (ctf_update (fp) < 0) { errloc = "CTF file construction"; goto err; } if (fp->ctf_link_outputs) { ctf_dynhash_iter (fp->ctf_link_outputs, ctf_accumulate_archive_names, &arg); if (ctf_errno (fp) < 0) { errloc = "hash creation"; goto err; } } /* No extra outputs? Just write a simple ctf_file_t. */ if (arg.i == 0) return ctf_write_mem (fp, size, threshold); /* Writing an archive. Stick ourselves (the shared repository, parent of all other archives) on the front of it with the default name. */ if ((names = realloc (arg.names, sizeof (char *) * (arg.i + 1))) == NULL) { errloc = "name reallocation"; goto err_no; } arg.names = names; memmove (&(arg.names[1]), arg.names, sizeof (char *) * (arg.i)); arg.names[0] = (char *) _CTF_SECTION; if (fp->ctf_link_memb_name_changer) { void *nc_arg = fp->ctf_link_memb_name_changer_arg; transformed_name = fp->ctf_link_memb_name_changer (fp, _CTF_SECTION, nc_arg); if (transformed_name != NULL) { arg.names[0] = transformed_name; ctf_dynhash_iter (fp->ctf_link_outputs, ctf_change_parent_name, transformed_name); } } if ((files = realloc (arg.files, sizeof (struct ctf_file *) * (arg.i + 1))) == NULL) { errloc = "ctf_file reallocation"; goto err_no; } arg.files = files; memmove (&(arg.files[1]), arg.files, sizeof (ctf_file_t *) * (arg.i)); arg.files[0] = fp; if ((f = tmpfile ()) == NULL) { errloc = "tempfile creation"; goto err_no; } if ((err = ctf_arc_write_fd (fileno (f), arg.files, arg.i + 1, (const char **) arg.names, threshold)) < 0) { errloc = "archive writing"; ctf_set_errno (fp, err); goto err; } if (fseek (f, 0, SEEK_END) < 0) { errloc = "seeking to end"; goto err_no; } if ((fsize = ftell (f)) < 0) { errloc = "filesize determination"; goto err_no; } if (fseek (f, 0, SEEK_SET) < 0) { errloc = "filepos resetting"; goto err_no; } if ((buf = malloc (fsize)) == NULL) { errloc = "CTF archive buffer allocation"; goto err_no; } while (!feof (f) && fread (buf, fsize, 1, f) == 0) if (ferror (f)) { errloc = "reading archive from temporary file"; goto err_no; } *size = fsize; free (arg.names); free (arg.files); free (transformed_name); if (arg.ndynames) { size_t i; for (i = 0; i < arg.ndynames; i++) free (arg.dynames[i]); free (arg.dynames); } return buf; err_no: ctf_set_errno (fp, errno); err: free (buf); if (f) fclose (f); free (arg.names); free (arg.files); free (transformed_name); if (arg.ndynames) { size_t i; for (i = 0; i < arg.ndynames; i++) free (arg.dynames[i]); free (arg.dynames); } ctf_dprintf ("Cannot write archive in link: %s failure: %s\n", errloc, ctf_errmsg (ctf_errno (fp))); return NULL; }