// elfcpp_swap.h -- Handle swapping for elfcpp -*- C++ -*- // Copyright (C) 2006-2019 Free Software Foundation, Inc. // Written by Ian Lance Taylor <iant@google.com>. // This file is part of elfcpp. // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU Library General Public License // as published by the Free Software Foundation; either version 2, or // (at your option) any later version. // In addition to the permissions in the GNU Library General Public // License, the Free Software Foundation gives you unlimited // permission to link the compiled version of this file into // combinations with other programs, and to distribute those // combinations without any restriction coming from the use of this // file. (The Library Public License restrictions do apply in other // respects; for example, they cover modification of the file, and /// distribution when not linked into a combined executable.) // This program is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Library General Public License for more details. // You should have received a copy of the GNU Library General Public // License along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA // 02110-1301, USA. // This header file defines basic template classes to efficiently swap // numbers between host form and target form. When the host and // target have the same endianness, these turn into no-ops. #ifndef ELFCPP_SWAP_H #define ELFCPP_SWAP_H #include <stdint.h> // We need an autoconf-generated config.h file for endianness and // swapping. We check two macros: WORDS_BIGENDIAN and // HAVE_BYTESWAP_H. #include "config.h" #ifdef HAVE_BYTESWAP_H #include <byteswap.h> #else // Provide our own versions of the byteswap functions. inline uint16_t bswap_16(uint16_t v) { return ((v >> 8) & 0xff) | ((v & 0xff) << 8); } inline uint32_t bswap_32(uint32_t v) { return ( ((v & 0xff000000) >> 24) | ((v & 0x00ff0000) >> 8) | ((v & 0x0000ff00) << 8) | ((v & 0x000000ff) << 24)); } inline uint64_t bswap_64(uint64_t v) { return ( ((v & 0xff00000000000000ULL) >> 56) | ((v & 0x00ff000000000000ULL) >> 40) | ((v & 0x0000ff0000000000ULL) >> 24) | ((v & 0x000000ff00000000ULL) >> 8) | ((v & 0x00000000ff000000ULL) << 8) | ((v & 0x0000000000ff0000ULL) << 24) | ((v & 0x000000000000ff00ULL) << 40) | ((v & 0x00000000000000ffULL) << 56)); } #endif // !defined(HAVE_BYTESWAP_H) // gcc 4.3 and later provides __builtin_bswap32 and __builtin_bswap64. #if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3)) #undef bswap_32 #define bswap_32 __builtin_bswap32 #undef bswap_64 #define bswap_64 __builtin_bswap64 #endif namespace elfcpp { // Endian simply indicates whether the host is big endian or not. struct Endian { public: // Used for template specializations. static const bool host_big_endian = #ifdef WORDS_BIGENDIAN true #else false #endif ; }; // Valtype_base is a template based on size (8, 16, 32, 64) which // defines the type Valtype as the unsigned integer, and // Signed_valtype as the signed integer, of the specified size. template<int size> struct Valtype_base; template<> struct Valtype_base<8> { typedef uint8_t Valtype; typedef int8_t Signed_valtype; }; template<> struct Valtype_base<16> { typedef uint16_t Valtype; typedef int16_t Signed_valtype; }; template<> struct Valtype_base<32> { typedef uint32_t Valtype; typedef int32_t Signed_valtype; }; template<> struct Valtype_base<64> { typedef uint64_t Valtype; typedef int64_t Signed_valtype; }; // Convert_endian is a template based on size and on whether the host // and target have the same endianness. It defines the type Valtype // as Valtype_base does, and also defines a function convert_host // which takes an argument of type Valtype and returns the same value, // but swapped if the host and target have different endianness. template<int size, bool same_endian> struct Convert_endian; template<int size> struct Convert_endian<size, true> { typedef typename Valtype_base<size>::Valtype Valtype; static inline Valtype convert_host(Valtype v) { return v; } }; template<> struct Convert_endian<8, false> { typedef Valtype_base<8>::Valtype Valtype; static inline Valtype convert_host(Valtype v) { return v; } }; template<> struct Convert_endian<16, false> { typedef Valtype_base<16>::Valtype Valtype; static inline Valtype convert_host(Valtype v) { return bswap_16(v); } }; template<> struct Convert_endian<32, false> { typedef Valtype_base<32>::Valtype Valtype; static inline Valtype convert_host(Valtype v) { return bswap_32(v); } }; template<> struct Convert_endian<64, false> { typedef Valtype_base<64>::Valtype Valtype; static inline Valtype convert_host(Valtype v) { return bswap_64(v); } }; // Convert is a template based on size and on whether the target is // big endian. It defines Valtype and convert_host like // Convert_endian. That is, it is just like Convert_endian except in // the meaning of the second template parameter. template<int size, bool big_endian> struct Convert { typedef typename Valtype_base<size>::Valtype Valtype; static inline Valtype convert_host(Valtype v) { return Convert_endian<size, big_endian == Endian::host_big_endian> ::convert_host(v); } }; // Swap is a template based on size and on whether the target is big // endian. It defines the type Valtype and the functions readval and // writeval. The functions read and write values of the appropriate // size out of buffers, swapping them if necessary. readval and // writeval are overloaded to take pointers to the appropriate type or // pointers to unsigned char. template<int size, bool big_endian> struct Swap { typedef typename Valtype_base<size>::Valtype Valtype; static inline Valtype readval(const Valtype* wv) { return Convert<size, big_endian>::convert_host(*wv); } static inline void writeval(Valtype* wv, Valtype v) { *wv = Convert<size, big_endian>::convert_host(v); } static inline Valtype readval(const unsigned char* wv) { return readval(reinterpret_cast<const Valtype*>(wv)); } static inline void writeval(unsigned char* wv, Valtype v) { writeval(reinterpret_cast<Valtype*>(wv), v); } }; // We need to specialize the 8-bit version of Swap to avoid // conflicting overloads, since both versions of readval and writeval // will have the same type parameters. template<bool big_endian> struct Swap<8, big_endian> { typedef typename Valtype_base<8>::Valtype Valtype; static inline Valtype readval(const Valtype* wv) { return *wv; } static inline void writeval(Valtype* wv, Valtype v) { *wv = v; } }; // Swap_unaligned is a template based on size and on whether the // target is big endian. It defines the type Valtype and the // functions readval and writeval. The functions read and write // values of the appropriate size out of buffers which may be // misaligned. template<int size, bool big_endian> struct Swap_unaligned; template<bool big_endian> struct Swap_unaligned<8, big_endian> { typedef typename Valtype_base<8>::Valtype Valtype; static inline Valtype readval(const unsigned char* wv) { return *wv; } static inline void writeval(unsigned char* wv, Valtype v) { *wv = v; } }; template<> struct Swap_unaligned<16, false> { typedef Valtype_base<16>::Valtype Valtype; static inline Valtype readval(const unsigned char* wv) { return (wv[1] << 8) | wv[0]; } static inline void writeval(unsigned char* wv, Valtype v) { wv[1] = v >> 8; wv[0] = v; } }; template<> struct Swap_unaligned<16, true> { typedef Valtype_base<16>::Valtype Valtype; static inline Valtype readval(const unsigned char* wv) { return (wv[0] << 8) | wv[1]; } static inline void writeval(unsigned char* wv, Valtype v) { wv[0] = v >> 8; wv[1] = v; } }; template<> struct Swap_unaligned<32, false> { typedef Valtype_base<32>::Valtype Valtype; static inline Valtype readval(const unsigned char* wv) { return (wv[3] << 24) | (wv[2] << 16) | (wv[1] << 8) | wv[0]; } static inline void writeval(unsigned char* wv, Valtype v) { wv[3] = v >> 24; wv[2] = v >> 16; wv[1] = v >> 8; wv[0] = v; } }; template<> struct Swap_unaligned<32, true> { typedef Valtype_base<32>::Valtype Valtype; static inline Valtype readval(const unsigned char* wv) { return (wv[0] << 24) | (wv[1] << 16) | (wv[2] << 8) | wv[3]; } static inline void writeval(unsigned char* wv, Valtype v) { wv[0] = v >> 24; wv[1] = v >> 16; wv[2] = v >> 8; wv[3] = v; } }; template<> struct Swap_unaligned<64, false> { typedef Valtype_base<64>::Valtype Valtype; static inline Valtype readval(const unsigned char* wv) { return ((static_cast<Valtype>(wv[7]) << 56) | (static_cast<Valtype>(wv[6]) << 48) | (static_cast<Valtype>(wv[5]) << 40) | (static_cast<Valtype>(wv[4]) << 32) | (static_cast<Valtype>(wv[3]) << 24) | (static_cast<Valtype>(wv[2]) << 16) | (static_cast<Valtype>(wv[1]) << 8) | static_cast<Valtype>(wv[0])); } static inline void writeval(unsigned char* wv, Valtype v) { wv[7] = v >> 56; wv[6] = v >> 48; wv[5] = v >> 40; wv[4] = v >> 32; wv[3] = v >> 24; wv[2] = v >> 16; wv[1] = v >> 8; wv[0] = v; } }; template<> struct Swap_unaligned<64, true> { typedef Valtype_base<64>::Valtype Valtype; static inline Valtype readval(const unsigned char* wv) { return ((static_cast<Valtype>(wv[0]) << 56) | (static_cast<Valtype>(wv[1]) << 48) | (static_cast<Valtype>(wv[2]) << 40) | (static_cast<Valtype>(wv[3]) << 32) | (static_cast<Valtype>(wv[4]) << 24) | (static_cast<Valtype>(wv[5]) << 16) | (static_cast<Valtype>(wv[6]) << 8) | static_cast<Valtype>(wv[7])); } static inline void writeval(unsigned char* wv, Valtype v) { wv[0] = v >> 56; wv[1] = v >> 48; wv[2] = v >> 40; wv[3] = v >> 32; wv[4] = v >> 24; wv[5] = v >> 16; wv[6] = v >> 8; wv[7] = v; } }; // Swap_aligned32 is a template based on size and on whether the // target is big endian. It defines the type Valtype and the // functions readval and writeval. The functions read and write // values of the appropriate size out of buffers which may not be // 64-bit aligned, but are 32-bit aligned. template<int size, bool big_endian> struct Swap_aligned32 { typedef typename Valtype_base<size>::Valtype Valtype; static inline Valtype readval(const unsigned char* wv) { return Swap<size, big_endian>::readval( reinterpret_cast<const Valtype*>(wv)); } static inline void writeval(unsigned char* wv, Valtype v) { Swap<size, big_endian>::writeval(reinterpret_cast<Valtype*>(wv), v); } }; template<> struct Swap_aligned32<64, true> { typedef Valtype_base<64>::Valtype Valtype; static inline Valtype readval(const unsigned char* wv) { return ((static_cast<Valtype>(Swap<32, true>::readval(wv)) << 32) | static_cast<Valtype>(Swap<32, true>::readval(wv + 4))); } static inline void writeval(unsigned char* wv, Valtype v) { typedef Valtype_base<32>::Valtype Valtype32; Swap<32, true>::writeval(wv, static_cast<Valtype32>(v >> 32)); Swap<32, true>::writeval(wv + 4, static_cast<Valtype32>(v)); } }; template<> struct Swap_aligned32<64, false> { typedef Valtype_base<64>::Valtype Valtype; static inline Valtype readval(const unsigned char* wv) { return ((static_cast<Valtype>(Swap<32, false>::readval(wv + 4)) << 32) | static_cast<Valtype>(Swap<32, false>::readval(wv))); } static inline void writeval(unsigned char* wv, Valtype v) { typedef Valtype_base<32>::Valtype Valtype32; Swap<32, false>::writeval(wv + 4, static_cast<Valtype32>(v >> 32)); Swap<32, false>::writeval(wv, static_cast<Valtype32>(v)); } }; } // End namespace elfcpp. #endif // !defined(ELFCPP_SWAP_H)